CT Images Segmentation of Lungs with COVID-۱۹ Infection Using Mask R-CNN
محل انتشار: دومین کنفرانس پژوهش های کاربردی در مهندسی برق
سال انتشار: 1400
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 627
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
AREEI02_003
تاریخ نمایه سازی: 6 تیر 1401
چکیده مقاله:
The coronavirus (COVID-۲۰۱۹) pandemic has caused a catastrophic effect on health and global economy. The most common standard for confirming the virus relies on RT-PCR tests. As a complement to RT-PCR, Computed tomography (CT) can be used for diagnosing COVID-۱۹. We describe the R-CNN (area-based torsional neural network) approach to segmentation of CT images of the lungs of people with COVID-۱۹ using a variety of augmentation methods. The class imbalance problem leads to inefficient training, which makes model degenerated. In this paper, we have used a method based on Mask R-CNN to segment Left lung, right lung, Covid-۱۹ infection. In our model, the Focal Loss function is used to suppress well-classified examples.The model is tested on COVID-۱۹-CT-Seg-۲۰cases dataset and the results showed that the accuracy reaches ۸۷.۹۳%. Compared with the smooth loss function in Mask R-CNN it improves by ۵%. Therefore, this model will aid health professionals to fasten the screening and validation of the initial assessment towards COVID-۱۹ patients.
کلیدواژه ها:
نویسندگان
Pariya Ghasemifard
School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran
Mehran Yazdi
School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran
Alireza Zolghadrasli
School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran