Artificial Neural Network (ANN) approach for modeling experimental data of viscosity and density of a ternary solution

سال انتشار: 1400
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 285

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

NTOGP03_016

تاریخ نمایه سازی: 3 تیر 1401

چکیده مقاله:

The Artificial neural network (ANN) approach was used to model experimental viscosity anddensity data for ternary aqueous solutions of calcium chloride and potassium chloride. Then, the ANNmodel was compared with the previously investigated models e.g., modified Jones-Dole, Hu,Exponential and GF models used for the same dataset. In the present study, the Levenberg-Marquardtalgorithm or "trainlm" command was selected as the training algorithm. Subsequently, differentconfigurations of the network were compared and the optimal multi-layer perceptron (MLP) networkwas designed with ۳ hidden layers and [۸ ۴ ۳] neurons since it showed better performance. Moreover,۸۰% of the dataset for network training, ۱۰% for validation and the rest for network testing wererandomly selected. Amid investigated models, ANN obtained the minimum mean square error (MSE) of۶.۲۰۰۸×۱۰-۵ and maximum R۲ of ۰.۹۹۹۷ while at best modifies Jones-Dole could achieve a MSE of۲.۷۶۸×۱۰-۵ and R۲ of ۰.۹۹۹۶. suggesting that the ANN model is the most optimal model for modelingthe viscosity and density of this ternary solution.

کلیدواژه ها:

نویسندگان

Saeed Ghasemzade Bariki

School of Chemical, Petroleum and Gas Engineering, Iran university of science and technology, ۱۶۸۴۶-۱۳۱۱۴, Tehran, Iran

Salman Movahedirad

School of Chemical, Petroleum and Gas Engineering, Iran university of science and technology, ۱۶۸۴۶-۱۳۱۱۴, Tehran, Iran

Ali Esmaeeli

UNESCO Chair on Water Reuse, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran