Artificial Neural Network (ANN) approach for modeling experimental data of viscosity and density of a ternary solution
سال انتشار: 1400
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 285
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
NTOGP03_016
تاریخ نمایه سازی: 3 تیر 1401
چکیده مقاله:
The Artificial neural network (ANN) approach was used to model experimental viscosity anddensity data for ternary aqueous solutions of calcium chloride and potassium chloride. Then, the ANNmodel was compared with the previously investigated models e.g., modified Jones-Dole, Hu,Exponential and GF models used for the same dataset. In the present study, the Levenberg-Marquardtalgorithm or "trainlm" command was selected as the training algorithm. Subsequently, differentconfigurations of the network were compared and the optimal multi-layer perceptron (MLP) networkwas designed with ۳ hidden layers and [۸ ۴ ۳] neurons since it showed better performance. Moreover,۸۰% of the dataset for network training, ۱۰% for validation and the rest for network testing wererandomly selected. Amid investigated models, ANN obtained the minimum mean square error (MSE) of۶.۲۰۰۸×۱۰-۵ and maximum R۲ of ۰.۹۹۹۷ while at best modifies Jones-Dole could achieve a MSE of۲.۷۶۸×۱۰-۵ and R۲ of ۰.۹۹۹۶. suggesting that the ANN model is the most optimal model for modelingthe viscosity and density of this ternary solution.
کلیدواژه ها:
Artificial neural network (ANN) ، Viscosity and density ، Ternary solutions ، multi-layerperceptron (MLP) ،
نویسندگان
Saeed Ghasemzade Bariki
School of Chemical, Petroleum and Gas Engineering, Iran university of science and technology, ۱۶۸۴۶-۱۳۱۱۴, Tehran, Iran
Salman Movahedirad
School of Chemical, Petroleum and Gas Engineering, Iran university of science and technology, ۱۶۸۴۶-۱۳۱۱۴, Tehran, Iran
Ali Esmaeeli
UNESCO Chair on Water Reuse, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran