New Model For Implementing Real Time Binary to Gray ۴-bit Decoder Based On Artificial Neural Network
سال انتشار: 1400
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 203
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
MHCONF06_043
تاریخ نمایه سازی: 28 خرداد 1401
چکیده مقاله:
Nowadays, various codes are used to enhance the security of computer networks, to make it easier to work with binary codes for ordinary people, and also to facilitate the detection and correction of errors in sending and receiving information. One of the most important codes used in shaft encoder sensors is Gray code. This code is used to determine the exact angle of rotational motion. Previously, these sensors used binary code. During using these codes in encoder shafts several important faults occurred. For solving these problems scientists suggested that using gray code would be efficient. Various techniques are available to convert binary code to gray code. In this paper, an approach based on Artificial Neural Networks (ANN) is been used to convert binary code to gray. Back propagation Algorithm for feed forward ANN has been simulated using MATLAB for converting these codes. The designed ANN is trained for all possible combination of code
کلیدواژه ها:
نویسندگان
Arian Taherkhani
School of Nuclear Energy, Ghazvin, Iran
Seyed Amidedin Mousavi
Department of Electrical Engineering Zanjan Branch, Islamic Azad University Zanjan, Iran