Classification of sEMG Signals for Diagnosis of Unilateral Posterior Crossbite in Primary Dentition using Fast Fourier Transform and Logistic Regression

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 192

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JADM-10-2_001

تاریخ نمایه سازی: 28 خرداد 1401

چکیده مقاله:

Posterior crossbite is a common malocclusion disorder in the primary dentition that strongly affects masticatory function. To the best of the author’s knowledge, for the first time, this article presents a reasonable and computationally efficient diagnostic system for detecting characteristics between children with and without unilateral posterior crossbite (UPCB) in the primary dentition from the surface electromyography (sEMG) activity of masticatory muscles. In this study, ۴۰ children (۴–۶y) were selected and divided into UPCB (n = ۲۰) and normal occlusion (NOccl; n = ۲۰) groups. The preferred chewing side was determined using a visual spot-checking method. The chewing rate was determined as the average of two chewing cycles. The sEMG activity of the bilateral masticatory muscles was recorded during two ۲۰-s gum-chewing sequences. The data of the subjects were diagnosed by the dentist. In this study, the fast Fourier transform (FFT) analysis was applied to sEMG signals recorded from subjects. The number of FFT coefficients had been selected by using Logistic Regression (LR) methodology. Then the ability of a multilayer perceptron artificial neural network (MLPANN) in the diagnosis of neuromuscular disorders in investigated. To find the best neuron weights and structures for MLPANN, particle swarm optimization (PSO) was utilized. Results showed the proficiency of the suggested diagnostic system for the classification of EMG signals. The proposed method can be utilized in clinical applications for diagnoses of unilateral posterior crossbite.

کلیدواژه ها:

posterior crossbite ، surface electromyography ، multilayer perceptron artificial neural network (MLPANN) ، Particle swarm optimization (PSO)

نویسندگان

H. Kalani

Department of Mechanical Engineering, Sadjad University, Mashhad, Iran.

E. Abbasi

Medical Faculty-Islamic Azad University of Mashhad, Mashhad, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • C. Maspero, L. Giannini, G. Galbiati, L. Kairyte and G. ...
  • B. Thilander, S. Wahlund, and B. Lennartsson, “The effect of ...
  • A. S. Andrade, G. H. Gameiro, M. DeRossi and M. ...
  • A. S. Pinto, P. H. Buschang, G. S. Throckmorton, P. ...
  • K. Woźniak, L. Szyszka-Sommerfeld, and D. Lichota, “The electrical activity ...
  • M. Wieckiewicz, M. Zietek, D. Nowakowska, W. Wieckiewicz, “Comparison of ...
  • I. Veli, T. Uysal, T. Ozer, F. I. Ucar, M. ...
  • D. Braxton, C. Dauchel, and W. Brown, “Association between chewing ...
  • W. E. Brown, K. R. Langley, L. Mioche, S. Marie, ...
  • A. Monaco, F. Sgolastra, I. Ciarrocchi, R. Cattaneo, “Effects of ...
  • A. D. S. Andrade, M. B. D. Gavião, G. H. ...
  • M. G. Piancino, D. Farina, F. Talpone, A. Merlo, and ...
  • S. Tecco, S. Tetè, and F. Festa, “Electromyographic evaluation of ...
  • S. G. Farias Gomes, W. Custodio, J. S. Moura Jufer, ...
  • G. Iodice, G. Danzi, R. Cimino, S. Paduano, A. Michelotti, ...
  • N. F. Güler, and S. Koçer, “ Classification of EMG ...
  • S. Koçer, “Classification of EMG signals using neuro-fuzzy system and ...
  • H. Kalani, , S. Moghimi, and A. Akbarzadeh, “Towards an ...
  • H. Kalani, , S. Moghimi, and A. Akbarzadeh, “Toward a ...
  • N. Goharian, , S. Moghimi, and H. Kalani, “Application of ...
  • M. Asefi, S. Moghimi, H. Kalani, A.Moghimi, “Dynamic modeling of ...
  • h. Kalani, S. Moghimi, and A. Akbarzadeh, “SEMG-based prediction of ...
  • N. Goharian, S. Moghimi, and H. Kalani, “Estimation biting force ...
  • H. Kalani, S. M. Tahamipour-Z, I. Kardan, A. Akbarzadeh, A. ...
  • N. Goharian, H. Kalani, and S. Moghimi, “A time-delay parallel ...
  • H. Kalani, A. Akbarzadeh, and S. Moghimi, “Prediction of clenching ...
  • D. Barmpakos, P. Kaplanis, S. A. Karkanis, C. Pattichis, “Classification ...
  • Wu, Qi, J. F. Mao, C. F. Wei, Shan Fu, ...
  • A. Subasi, “Classification of EMG signals using PSO-optimized SVM for ...
  • V. Khoshdel; A. R Akbarzadeh, “ Application of statistical techniques ...
  • H. Kalani, M. Sardarabadi, and M. Passandideh-Fard, “Using artificial neural ...
  • A. S. Andrade, M. B. Gavião, M. Derossi, and G. ...
  • N. Tsanidis, G. Antonarakis, and S. Kiliaridis, “Functional changes after ...
  • B. Lucas, T. de S. Barbosa, L. J. Pereira, M. ...
  • E. M. A. Ibraheem, and M. Z. Nassani, “ The ...
  • K. H. L. Turcio, P. R. J. Zuim, A. M. ...
  • G. S. Throckmorton, P. H. Buschang, H. Hayasaki, A. S. ...
  • نمایش کامل مراجع