Anomaly Detection in Traffic Trajectories Using a Combination of Fuzzy, Deep Convolutional and Autoencoder Networks
محل انتشار: مجله مهندسی کامپیوتر و دانش، دوره: 4، شماره: 2
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 207
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CKE-4-2_001
تاریخ نمایه سازی: 25 خرداد 1401
چکیده مقاله:
Due to the increasing deployment of vehicles in human societies and the necessity for smart traffic control, anomaly detection is among the various tasks widely employed in traffic monitoring. As the issue of urban traffic and their relative smart monitoring systems have gained popularity among researchers in recent years, there exist several studies in this regard. In most of these studies, classification is performed based on the behavior of drivers, where a set of default trajectories are used in order to learn the system and classify the related data. However, two under-studied challenges are the lack of access to sufficient data to provide an efficient model, along with the lack of access to anomaly data that covers all possible abnormal trajectories. While the former challenge can be tackled through long-term data recording, the latter requires appropriate considerations. To this aim, we have utilized a combination of optimized convolutional neural network and fuzzy neural network classifiers, along with autoencoding neural networks. The final combination occurs at the decision level. First, the CNN-ANFIS classifier assigns the input trajectory to one of the predefined categories. Then, the trained autoencoder networks examine the result in order to find whether the trajectory is normal or abnormal. Obtaining ۸۷.۵% accuracy on QMUL and ۹۹.۵% on the T۱۵ datasets confirms the superior performance of the proposed method.
کلیدواژه ها:
نویسندگان
Mojtaba Banifakhr
Azadi Campus, Yazd University, Yazd, Iran, Email:Banifakhr.
Mohammad Taghi Sadeghi
Department of Electrical Engineering, Yazd University, Yazd, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :