Profit maximization solid transportation problem under budget constraint using fuzzy measures

سال انتشار: 1395
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 226

فایل این مقاله در 29 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJFS-13-5_004

تاریخ نمایه سازی: 24 خرداد 1401

چکیده مقاله:

Fixed charge solid transportation problems are formulated as profit maximization problems under a budget constraint at each destination. Here item is purchased in different depots at different prices. Accordingly the item is transported to different destinations from different depots using different vehicles. Unitsare sold from different destinations to the customers at different selling prices. Here selling prices, purchasing costs, unit transportation costs, fixed charges, sources at origins, demands at destinations, conveyances capacities are assumed to be crisp or fuzzy. Budget constraints at destinations are imposed. Itis also assumed that transported units are integer multiple of packets. So the problem is formulated as constraint optimization integer programming problem in crisp and fuzzy environments. Asoptimization of fuzzy objective as well as consideration of fuzzy constraint is not well defined, different measures possibility/necessity/credibility of fuzzy event are used to transform the problem into equivalent crisp problem. The reduced crisp problem is solved following generalized reduced gradient(GRG) method using lingo software. A  dominance  based genetic algorithm (DBGA) and a particle swarm optimization (PSO) technique using swap sequence are also developed for this purpose and are used to solve the model.  The models are illustrated with numerical examples. The results obtained using DBGA and PSO are compared with those obtained from GRG.Moreover, a statistical analysis  is presented to compare the algorithms.

نویسندگان

Pravash Kumar Giri

Department of Applied Mathematics with Oceanology and Computer Programming, Vidyasagar University, Paschim-Medinipur, W.B. ۷۲۱۱۰۲, India

Manas Kumar Maiti

Department of Mathematics, Mahishadal Raj College, Mahishadal, Purba-Medinipur, W.B.-۷۲۱۶۲۸, India

Manoranjan Maiti

Department of Applied Mathematics with Oceanology and Computer Programming, Vidyasagar University, Paschim-Medinipur, W.B. ۷۲۱۱۰۲, India

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • M. A. H. Akhand, S. Akter and M. A. Rashid, ...
  • M. Bessaou and P. Siarry, A genetic algorithm with real-value ...
  • Q. Cui and Y. Sheng, Uncertain Programming Model for Solid ...
  • T. E. Davis and J. C. Principe,A simulated annealing-like convergence ...
  • D. Dubois and H. Prade, Fuzzy sets and system-Theory and ...
  • D. Dubois and H. Prade, Ranking fuzzy numbers in the ...
  • K. Durai Raj, A. Antony and C. Rajendran, Fast heuristic ...
  • R. C. Eberhart and J. Kennedy, A new optimizer using ...
  • A. P. Engelbrecht,Fundamentals of Computational Swarm Intelligence, John Wiley and ...
  • A. Esmin, A. Aoki, and R. G. Lambert-Torres,Particle swarm optimization ...
  • H. M. Feng, Particle swarm optimization learning fuzzy systems design, ...
  • M. Gen, K. Ida, Y. Li and E. Kubota, Solving ...
  • W. M. Hirsch and G. B. Dantzig, The xed charge ...
  • F. L. Hitchcock, The distribution of the product from several ...
  • H. J. Holland, Adaptation in natural and arti cial systems, University ...
  • F. Jimnez and J. L. Verdegay, Solving fuzzy solid transportation ...
  • J. Kennedy and R. C., Eberhart, Particle swarm optimisation, In ...
  • J. L. Kennington and V. E. Unger, A new branch ...
  • P. Kundu, S. Kar and M. Maiti, Multi-objective multi-item solid ...
  • P. Kundu, S. Kar and M. Maiti,Fixed charge transportation problem ...
  • M. Last and S. Eyal,A fuzzy-based lifetime extension of genetic ...
  • J. J. Liang, A. K. Qin, P. N. Suganthan and ...
  • B. Liu and Y. K. Liu, Expected value of the ...
  • B. Liu, Theory and practice of uncertain programming, Physica-Verlag, Heidelberg, ...
  • S. Liu, Fuzzy total transportation cost measures for fuzzy solid ...
  • B. Liu and K. Iwamura, A note on chance constrained ...
  • Z. Michalewicz,Genetic Algorithms + data structures= evolution programs, Springer-Verlag,AI Series, ...
  • S. Molla-Alizadeh-Zavardehi, S. Sadi Nezhadb, R. Tavakkoli-Moghaddamc and M. Yazdani,Solving ...
  • H. Nezmabadi-Pour, S. Yazdani, M. M. Farsangi and M. Neyestani, ...
  • A. Ojha, B. Das, S. Mondal and M. Maiti, An ...
  • A. Ojha, B. Das, S. Mondal and M. Maiti, A ...
  • A. Ojha, B. Das, S. Mondal and M. Maiti Transportation ...
  • I. M. Oliver, D. J. Smith and J. R. C. ...
  • E. D. Schell, Distribution of a product by several properties, ...
  • M. Sun, J. E. Aronson, P. G. Mckeown and D. ...
  • X. Yan, C. Zhang, W. Luo, W. Li, W. Chen ...
  • L. Yang and L. Liu, Fuzzy xed charge solid transportation ...
  • L. A. Zadeh, Fuzzy Set as a basis for a ...
  • نمایش کامل مراجع