Measurement of Bitcoin Daily and Monthly Price Prediction Error Using Grey Model, Back Propagation Artificial Neural Network and Integrated model of Grey Neural Network
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 319
فایل این مقاله در 19 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_AMFA-7-3_002
تاریخ نمایه سازی: 21 خرداد 1401
چکیده مقاله:
One of the recent financial technologies is Block chain-based currency known as Cryptocurrency that these days because of their unique features has become quite popular. The first known Cryptocurrency in the world is Bitcoin, and since the cryptocurrencies market is a contemporary one, Bitcoin is currently considered as the pioneer of this market. Since the value of the previous Bitcoin prices data have a non-linear behaviour, this study aims at predicting Bitcoin price using Grey model, Back Propagation Artificial Neural Network and Integrated Model of Grey Neural Network. Then, the prediction’s accuracy of these methods will be measured using MAPE and RMSE indices and also Bitcoin price data for a five-year period (۲۰۱۴-۲۰۱۸). The results had indicated that wen estimating Bitcoin daily prices, Back Propagation Artificial Neural Network model has the lowest absolute error rate (۵.۶%) compared to the Grey model and the integrated model. Additionally, for the monthly prediction of Bitcoin price, the integrated model, with the lowest absolute error rate (۹%), has a better performance than the two other models.
کلیدواژه ها:
Bitcoin ، block chain ، Grey Model ، Back Propagation Artificial Neural Network ، Grey-Neural Network
نویسندگان
Mahdi Madanchi Zaj
Department of Financial Management, Electronic Campus, Islamic Azad University Tehran, Iran
Mohammad Ebrahim Samavi
Department of Finance, College of Management and Economics, Financial Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Emad Koosha
Department of Finance, Financial Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :