Comparison of the Ability of Modern and Conventional Metaheuristic and Regression Models to Predict Stock Returns by Accounting Variables and Presenting an Effective Model

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 239

فایل این مقاله در 20 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_AMFA-7-2_012

تاریخ نمایه سازی: 21 اردیبهشت 1401

چکیده مقاله:

Investment in the stock market requires decision-making and access to infor-mation on the future of the stock market. Given the importance of predicting stock returns, the present study aimed to discover the variables and indices that could predict stock returns. The prediction of stock returns has long been a 'hot topic' in advanced countries. While effective steps have been taken in this regard, the accu-rate prediction of stock returns remains a problem due to numerous issues. In this study, an accurate, applicable, and effective model was proposed for the predic-tion of stock returns. The statistical sample included ۱۳۸ active companies of Tehran Stock Exchange (TSE) during ۲۰۰۸-۲۰۱۷, which were selected by the systematic removal method. In total, ۱,۳۸۰ data years were selected for the re-search to evaluate the questions. Data analysis was performed using an adaptive neuro-fuzzy inference system (ANFIS), multi-gene genetic programming, and regression analysis. In addition, statistical tests were applied to evaluate the accu-racy of the model, implemented by MATLAB and GeneXproTools. According to the results, the hybrid metaheuristic method had a lower error rate compared to artificial neural network and regression analysis in terms of stock return predic-tion. Therefore, the proposed model could provide more accurate data within a shorter time to predict the stock market status since it makes predictions after selecting the most optimal input variables through ANFIS.

کلیدواژه ها:

Prediction of Stock Returns ، Metaheuristic Models ، Neural network ، Regression

نویسندگان

Mahmood Kohansal Kafshgari

Department of Accounting, Isfahan Branch (Khorasgan), Islamic Azad University, Isfahan, Iran

Alireza Zarei Sodani

Department of Accounting, Falavarjan Branch, Islamic Azad University, Isfahan, Iran

Reza Behmanesh

Department of Industrial engineering, Naghshejahan Higher Education Institute, Isfahan, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • References[۱] Ahmadifar, M., Zaranejad, M., Forecasting Stock Returns by Hybrid ...
  • AhmadKhanBeygi, S., Abdolvand, N., Stock Price Prediction Modeling Using Artificial ...
  • Asalakis, G., Valavanis, K., Forcasting Stock market short-term trends using ...
  • Azar, A., Karimi, S., Forecasts of Stock Returns by Using ...
  • Binghui, w., ting ting, D., A Performance Comparison of Neoral ...
  • Boso, N., Oghazi, P., Cadogan, J.W., and Story, V., Entrepreneurial ...
  • Chauhan, B., Bidave, U., Gangathade.A, Kale.S., Stock Market Prediction Using ...
  • Doloo, M., Heydari, T., predict the price index of Tehran ...
  • Fallahpour, A., Kazemi, N., Molani, M., Nayyeri, S., and Ehsani,M., ...
  • Fallahpour, A., Olugu, E.U., Musa, S.N., Khezrimotlagh, D., Wong, K.Y., ...
  • Farhi, E., Gourio, F., Accounting for macro-finance trends: Market power, ...
  • Gandomi, A.H., Alavi, A.H., Ryan, C., Handbook of genetic programming ...
  • Ghasemzadeha, M., Mohammad-Karimi, N., Ansari-Samani, H., Machine learning algorithms for ...
  • Doi: ۴۱۰.۲۲۰۳۴/AMFA.۲۰۲۰.۶۷۴۹۴۶[۱۶] Gholamnejad, J., Lotfian R., Mirzaeian Lord, K. Y., ...
  • Ince, H., Trafalis,B., Ua Hybrid Forecasting Model for Stock Market ...
  • Karil, Q. C., Acompurision between Fama and French Model and ...
  • Kasabov, N., Song, Q., Denfis: Dynamic,evolving neural-fuzzy inference system and ...
  • Khodayari, M.A., Yaghobnezhad, A., A Neural-Network Approach to the Modeling ...
  • Doi: ۱۰.۱۰۱۶/j.eswa.۲۰۱۰.۰۴.۰۴۵ ...
  • Monajemi, A., Stock Price Prediction Stock Exchang by Using Fuzzy- ...
  • Namazi, M., Kiamehr, M.M., Predicting Daily Stock Returns of Companies listed ...
  • Omidi Gohar, E., Darabi, R., The Relationship between Earnings Variability ...
  • Raei, R., Chavooshi, K., prediction Stock Return Behavior By Arbitrage Pricing ...
  • Doi: ۴۱۰.۲۲۰۳۴/AMFA.۲۰۲۰.۶۷۴۹۴۶[۳۰] Rajabpour, E., Taghva, M.R., Hossienzadeh Yazdi, M.A., Baba ...
  • Renu, V., Chandra, A., Predicting stock returns nifty index: An ...
  • Izadikhah, M. Financial Assessment of Banks and Financial Institutes in ...
  • Sheta, A. et al., A Comparison between Regression Artifical Neural ...
  • Takagi, T., Sugeno, M., Fuzzy identification of system and its ...
  • Tan, H., Prokhorov, K., Wunsch, K., Conservative Thiry Calendar Stock ...
  • Tavana, M., Fallahpour, M.A., Caprio, D.Di., and Santos-Arteaga, F.J., A ...
  • Tolouie Eshlaghy, A., Haghdoust, S., Modelling of Prediction Stock Price ...
  • Trinkel, B.S., Forecasting annual excess stock returns via an adaptive ...
  • نمایش کامل مراجع