Artificial neural networks approach for energy modeling of chickpea production under dry farming system in Kangavar county of Iran
سال انتشار: 1400
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 243
فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
CEITCONF05_008
تاریخ نمایه سازی: 27 فروردین 1401
چکیده مقاله:
This study was conducted in order to determine energy consumption and their modeling for chickpea production under dry farming system using artificial neural networks (ANNs) in Kangavar county of Kermanshah province, Iran. The initial data was collected from ۲۵ chickpea producers in thestudied area. The results indicated that total average energy input for chickpea production was ۵۵۱۳.۸۱ MJ ha–۱. Also, diesel fuel (with ۶۴%) was the highest energy inputs for chickpea production. The rate of energy use efficiency, energy productivity and net energy was calculated as ۱.۴۰, ۰.۱۰ kg MJ-۱ and ۲۲۱۵.۷۵MJ ha-۱, respectively. In this study, Levenberg-Marquardt learning algorithm was used for training ANNs based on data collected from chickpea producers. The ANN model with ۶-۶-۱ structure was the best network for predicting the chickpea yield with highest rate of R۲ and lowest rate of MSE and MAPE in allthree cases of training, testing and validating
کلیدواژه ها:
نویسندگان
Ashkan Nabavi- Pelesaraei
Assistant Professor Department of Mechanical Engineering of Biosystems Razi University Kermanshah, Iran