Cash flow forecasting by using simple and sophisticated models in Iranian companies
محل انتشار: مجله مالی ایران، دوره: 3، شماره: 1
سال انتشار: 1398
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 237
فایل این مقاله در 29 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJFIFSA-3-1_002
تاریخ نمایه سازی: 24 فروردین 1401
چکیده مقاله:
Cash flow is one of the critical resources in the economic unit and the balance between available cash and cash needs is the most important factor in economic health. Since judgments of many stakeholders such as investors and shareholders about the position of the economic unit are based on liquidity situation, so predicting future cash flow is crucial. In this research, the impact of cash and accrual items on cash flow forecasts has been studied. Providing a proper model to predict operating cash flows and review some important characteristics of cash flow forecasting regression models, using a multilayer perceptron and determining the best model by using accrual regression model variables for predicting cash flows. For this purpose, ۲۸۷ firms listed in Tehran Stock Exchange during ۲۰۰۸ to ۲۰۱۷ were studied; Linear and nonlinear regression, correlation coefficient and artificial neural network statistical methods have been used for data analysis and predictive power of powers was compared by using the sum of squared prediction error and coefficient of determination. Results showed that the accrual regression model can predict future cash flows better than other tested models and among corporate characteristics, the highest correlation belongs to sales volatility and firm size with accrual regression models. On the other hand, results of fitting different neural network models indicate that two structures with ۸ and ۱۱ hidden nodes are the best models to predict cash flows.
کلیدواژه ها:
نویسندگان
Fatemeh Sarraf
Assistant Prof., Department Of Accounting, Islamic Azad University, South Tehran Branch, Tehran, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :