Comparing Prediction Methods of Artificial Neural Networks in Extracting Financial Cycles of Tehran Stock Exchange based on Markov Switching and Ant Colony Algorithm
محل انتشار: مجله مالی ایران، دوره: 3، شماره: 2
سال انتشار: 1398
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 202
فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJFIFSA-3-2_001
تاریخ نمایه سازی: 24 فروردین 1401
چکیده مقاله:
The stock exchange is considered to be an important establishment to finance long term projects, on one hand, and to collect savings and finance of private section. The stock exchange can be a safe and secure place to invest surplus funds to purchase corporate stocks. As recession and prosperity in this market can have a great role in stockholders` decision-making, it becomes vital to predict these cycles. In this paper, using model MSMH(۴)AR(۲), we extract the financial cycles of the market. Then, using the ant colony algorithm, we determine the most significant predictors and predict the market financial cycles using neural networks. The results show that the PNN model performs better in predicting the future market with respect to the criteria of mean squared error, the root mean squared error, the model accuracy and kappa coefficient.
کلیدواژه ها:
نویسندگان
Farzaneh Abdollahian
PhD Candidate, Department of Industrial Management, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
Mohammad Ebrahim Mohammad Pourzarandi
Prof., Department of Finance, Faculty of Management, Islamic Azad University, Central Tehran Branch, Tehran, Iran.
Mehrzad Minouei
Assistant Prof., Department of Industrial Management, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
Seyed Mohammad Hasheminejad
Assistant Prof., Department of Management, Medical Science Branch, Islamic Azad University, Tehran, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :