Improving Persian Named Entity Recognition Through Multi Task Learning

سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 289

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_ITRC-13-2_005

تاریخ نمایه سازی: 22 فروردین 1401

چکیده مقاله:

Named Entity Recognition is a challenging task, specially for low resource languages, such as Persian, due to the lack of massive gold data. As developing manually-annotated datasets is time consuming and expensive, we use a multitask learning (MTL) framework to exploit different datasets to enrich the extracted features and improve the accuracy of recognizing named entities in Persian news articles. Highly motivated auxiliary tasks are chosen to be included in a deep learning based structure. Additionally, we investigate the effect of chosen datasets on performance of the model. Our best model significantly outperformed the state of the art model by , according to F۱ score in the phrase level.

نویسندگان

Mohammad Hadi Bokaei

Information Technology Institute Telecommunication research Center, Tehran, Iran

Abdolah Sepahvand

Information Technology Institut Telecommunication Research Center, Tehran, Iran

Mohammad Nouri

Information Technology Institute Telecommunication Research Center, Tehran, Iran