A Hybridized Lagrangian Genetic Algorithm for Designing an Integrated Supply Chain Network: A Case Study Approach

سال انتشار: 1392
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 167

فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_RIEJ-2-1_005

تاریخ نمایه سازی: 15 فروردین 1401

چکیده مقاله:

This paper investigates the problem of designing an integrated production-distribution system which supports strategic and tactical decision levels in supply chain management. This overall optimization is achieved using mathematical programming for modeling the supply chain functions such as location, production, and distribution functions. Our model intends to minimize the total cost including production, location, transportation, and inventory holding costs. In view of the NP-hard nature of the problem, this paper provides a hybrid algorithm incorporates Genetic Algorithm into Lagrangian Relaxation method (namely HLRGA) to update the lagrangian multipliers and improve the performance of LR method. The effectiveness of HLRGA has been investigated by comparing its results with those obtained by CPLEX, hybrid genetic algorithm, and simulated annealing on a set of supply chain network problems with different sizes. Finally, an industrial case demonstrates the feasibility of applying the proposed model and algorithm to the real-world problem in a supply chain network.

نویسندگان

A. Jafari

Department of Industrial Engineering, Science and Culture University, Tehran, Iran

P. Chiniforooshan

Department of Industrial Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

F. Zabihi

Technology Development Institute, Department of Industrial Engineering, Tehran, Iran