A hybrid SLCARMA-GRUNN model for modelling periodic highfrequency data
محل انتشار: چهارمین کنفرانس بین المللی محاسبات نرم
سال انتشار: 1400
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 270
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
CSCG04_073
تاریخ نمایه سازی: 23 اسفند 1400
چکیده مقاله:
The intra-day return of high-frequency financial data have periodic structure. These data have volatilities and existing works assumes it is a stationary process. However, there is evidence for the presence of intra-day periodicity or seasonality in volatility. Due to the inherent periodicity and non-linear characteristics of high-frequency data, the accurate prediction of these data is critical to the market activity. In order to present a model that supports this feature, we introduce a hybrid semi Lévy driven continuous-time ARMA (SLCARMA)-gate recurrent unit neural network (GRUNN) model. The hybrid SLCARMA-GRUNN model based on the traditional method that assume the linear components and non-linear components should be linearly added.The proposed hybrid model is applied to ۳۰-minute squared log returns of Dow Jones Industrial Average indices
کلیدواژه ها:
CARMA model ، Gated recurrent unit neural network ، Kalman filter ، Periodically correlated process ، Recurrent neural networks ، Semi-Lévy process.
نویسندگان
Mohammad Mohammadi
Faculty of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran
Saeid Rezakhah
Faculty of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran,
Navideh Modarresi
Faculty of Statistics, Mathematics and Computer, Allameh Tabataba'i University, Tehran, Iran