Analyzing and Predicting Fatal Road Traffic Crash Severity Using Tree-Based Classification Algorithms
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 321
فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJTE-9-3_001
تاریخ نمایه سازی: 7 اسفند 1400
چکیده مقاله:
Nowadays, a significant part of goods and passengers are transported on suburban highways with mainly high-speed vehicles. Hence, these highways are very prone to accidents with different injuries. Due to the high fatality or severe physical/mental injury rates caused by car crashes, analyzing these accident-prone areas and identifying the factors affecting their occurrences is crucial. The specific objective of the study was to compare Chi-square Automatic Interaction Detector (CHAID), Classification and Regression Tree (CART), C۴.۵ and C۵.۰ decision tree data mining classification algorithms in building classification models for the fatality severity of ۲۳۵۵ fatal crash data records during ۲۰۰۷-۲۰۰۹ occurred in the roadways of ۸ states in the USA. The results were evaluated using the accuracy metrics such as overall accuracy, kappa rate, precision, recall, and F-measure. The investigations confirmed that C۵.۰ had the best performance with the overall accuracy, and kappa rates of ۹۴% and ۹۲%, respectively. Additionally, classified fatality severity levels of the crashes were proposed for each algorithm to generate risk maps on the roads, to create potential accident risk spots. Decision tree models can be used for real-time data to find invariants in the tree over a period of time, which would be beneficial for policymakers.
کلیدواژه ها:
نویسندگان
Saba Momeni Kho
School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
Parham Pahlavani
School of Surveying and Geospatial Eng., College of Eng., University of Tehran
Behnaz Bigdeli
School of Civil Engineering, Shahrood University of Technology, Shahrood, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :