Linear Vibration Identification Using Machine Learning Approaches
محل انتشار: یازدهمین کنفرانس بین المللی آکوستیک و ارتعاشات
سال انتشار: 1400
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 210
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ISAV11_075
تاریخ نمایه سازی: 20 بهمن 1400
چکیده مقاله:
As Machine Learning (ML) techniques have been modified and more mainstream, the appli-cations of these techniques are increasing in many scientific and industrial fields. Although vibration-based structure identification techniques have been improved upon to diagnose fail-ure symptoms or identify system parameters, new methods based on machine learning have been studied to increase their performances. This research aims to present an innovative appli-cation of machine learning in structure identification. An aluminum cantilever beam that is randomly excited by using an electrodynamic shaker was selected as the case study example to prove the methodology experimentally. By using a combination of ML-based regression and classification techniques, the vibration responses are measured at different points to identify the beam natural frequencies. The estimated results are validated using the Fast Fourier Trans-form (FFT) and Frequency Domain Decomposition (FDD) methods. The results show that us-ing the proposed ML-based technique can present a new output-only identification method to identify the system accurately.
کلیدواژه ها:
نویسندگان
Javad Isavand
School of Mechatronics, Harbin Institute of Technology, Harbin, China
Andrew Peplow
Department of Construction Science, Lund University, Lund, Sweden.
Jihong Yan
School of Mechatronics, Harbin Institute of Technology, Harbin, China