کشف مشتریان سودآور با رویکرد داده محور
محل انتشار: فصلنامه پژوهشنامه بیمه، دوره: 36، شماره: 3
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 297
فایل این مقاله در 28 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JIRC-36-3_003
تاریخ نمایه سازی: 2 بهمن 1400
چکیده مقاله:
هدف: امروزه مشتریان به عامل بسیار مهم و حیاتی در هدایت سرمایهگذاران، تولیدکنندگان و حتی محققان و نوآوران مبدل گشته اند. به همین دلیل، سازمان ها نیاز دارند مشتریان خود را بشناسند و برای آنان برنامه ریزی کنند. در این پژوهش، تلاش شده تا به یکی از اساسی ترین سوالات سازمان های بیمه ای، یعنی پیش بینی سطح خسارت مشتریان، پاسخ داده شود.روش تحقیق: در پژوهش حاضر از ابزار داده کاوی برای داده های مشتریان صنعت بیمه، بخش بیمه بدنه خودرو از سال ۱۳۹۴ تا ۱۳۹۶ استفاده شده است. تعداد کل داده ها که از ابتدا در این پژوهش مورد استفاده قرار می گیرد بیش از ۱۹۳۵۶ بوده که در ادامه و در طی آماده سازی آن ها با استفاده از نرم افزار Rapidminer ۷.۱ تعداد داده هایی که در نرم افزار لحاظ می شود ۱۹۳۵۶ است. پس از پردازش اولیه تلاش می شود، از بین ۱۵ متغیر موجود در پایگاه داده ویژگی استخراج شود که ملموس باشد و این پژوهش را در هدف خود یاری دهد. بدین منظور با به کارگیری خوشه بندی، رانندگان بر اساس میزان مبلغ خسارت به خوشه های مجزا تقسیم میشوند و ویژگی های هر خوشه بیان می شود. در قسمت خوشه بندی، ابتدا الگوریتم های k-means، k-medoidsو DBSCAN استفاده شده است. سپس الگوریتم های بکار رفته به جهت زمان انجام محاسبات و میزان صحت با یکدیگر مقایسه شدند.یافته ها: در نهایت الگوریتم k-means به عنوان الگوریتم بهینه برای این مجموعه داده انتخاب شد. در انتها به کمک درخت تصمیم مدلی پیشبینی ارایه میشود که شرکت های بیمه را در جهت سودآوری بیشتر و کشف مشتریان سودآور کمک میکند و برای برنامه ریزی و تصمیم گیری های آتی سازمان قابل استفاده است.نتیجه گیری: برای پیشبینی، درخت تصمیم، با میزان صحت ۲۱/۸۶% بهترین مدلی بود که در این پژوهش به آن رسیدیم و در مدل درخت تصمیم ارایه شده معیار درآمد بیمه گذار به عنوان گره ریشه درنظرگرفته می شود که همین نکته نشان دهنده آن است روش بکار رفته می تواند به شرکت های بیمه کمک کند تا با تمرکز بر مشتریان سودآور به درآمد بیشتری برسند. طبقه بندی موضوعی: B۳۱, C۳۸, C۲۲, D۱۲
کلیدواژه ها:
نویسندگان
مریم نژادافراسیابی
دانشجوی دکتری مهندسی صنایع، دانشکده مهندسی صنایع و سیستم های مدیریت، دانشگاه صنعتی امیرکبیر، تهران، ایران.
اکبر اصفهانی پور
دانشیار گروه آموزشی مهندسی مالی، دانشکده مهندسی صنایع و سیستم های مدیریت، دانشگاه صنعتی امیرکبیر، تهران، ایران.
علی محمد کیمیاگری
دانشیار گروه آموزشی مهندسی مالی، دانشکده مهندسی صنایع و سیستم های مدیریت، دانشگاه صنعتی امیرکبیر ، تهران، ایران. (نویسنده مسئول).
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :