انتخاب یک فضای ویژگی بهینه در تشخیص حملات صرعی بر پایه آنالیز کمی سازی بازگشتی و الگوریتم ژنتیک
سال انتشار: 1395
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 133
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JIPET-7-26_004
تاریخ نمایه سازی: 19 دی 1400
چکیده مقاله:
در طبقه بندی داده ها انتخاب فضای ویژگی متناسب با ماهیت پدیده و قدرت تفکیک بالا بسیار حائز اهمیت است. قابلیت نگاشت بازگشتی در تحلیل دادگان غیرایستا موجب می شود در تشخیص حملات صرعی نیز مورد توجه قرار گیرد. در این پژوهش به تشخیص حملات صرعی توسط آنالیز کمی سازی بازگشتی بر پایه ترکیب الگوریتم ژنتیک و طبقه بند بیزین پرداخته شده است. در ابتدا نگاشت بازگشتی سیگنال EEG دو گروه صرعی و نرمال هریک شامل ۱۰۰ نمونه، بازای پنج نوع معیار فاصله (ماکزیمم فاصله، مینیمم فاصله، اقلیدوسی، ماهالانوبیس، منهتن) و ۱۰ حد آستانه(ε) مختلف تشکیل و بهترین مجموعه ویژگی بازای ۵۰ تکرار الگوریتم ژنتیک بر اساس نرخ طبقه بندی بیزین انتخاب گردید. نتایج، نشانگر کارایی بالای روش پیشنهادی بوده به گونه ای که با انتخاب معیار مینیمم فاصله و حدآستانه ۱˂ε˂ ۱/۰ تفکیک ۱۰۰ % است. همچنین روش نسبت به حد آستانه (ε) و معیار فاصله حساسیت پایینی دارد. ویژگی Trans با بیشترین مشارکت در انتخاب ویژگی و بالاترین صحت، به عنوان ویژگی بهینه معرفی می شود.
کلیدواژه ها:
نویسندگان
صالح لشکری
دانشجوی دکترا - دانشکده مهندسی برق، واحد مشهد، دانشگاه آزاد اسلامی، مشهد، ایران
مهدی آذرنوش
استادیار - دانشکده مهندسی برق، واحد مشهد، دانشگاه آزاد اسلامی، مشهد، ایران
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :