A New Fuzzy Hybrid Dynamic Programming for Scheduling Weighted Jobs on Single Machine
سال انتشار: 1396
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 165
فایل این مقاله در 19 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_APRIE-4-2_004
تاریخ نمایه سازی: 2 دی 1400
چکیده مقاله:
In this paper, dynamic programming for sequencing weighted jobs on a single machine to minimizing total tardiness is focused, to significance of fuzzy numbers field, and importance of that for decision makers who are facing on uncertain data, combination of dynamic programming and fuzzy numbers is applied. A random scheduling problem with fuzzy processing times is given and solved. In addition, algorithm consuming time during solving same category problem and different sizes are analyzed that for large problem CPU time usage is extremely unaffordable. Therefore demonstration of near-exact heuristic method such as Genetic Algorithm (GA) appears. In this paper sufficient discussion around solving this kind of problems and their algorithms analysis and a combination between Dynamic Programming (DP) and genetic algorithm as a newly born method is proposed that stand on DP performance and genetic algorithm search power, and finally comparison on the recent developed method has been held. Then this method can deal with real-world problem easily. Thus, decision makers actually can use this modification of dynamic programming for coping with un-crisp problem.
کلیدواژه ها:
نویسندگان
Seyedeh Maedeh Mirmohseni
School of Mathematics and Information Science, Guangzhou University, Guangzhou, China.
Seyed Hadi Nasseri
Department of Operations Research, Faculty of Mathematical Sciences, University of Mazandaran
Mohammad Hossein Khaviari
Department of Industrial Engineering, Mazandaran University of Science and Technology, Babol, Mazandaran, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :