Machine learning for investigation of climatic effects on the prevalence of Coronavirus
محل انتشار: دومین کنفرانس بین المللی کامپیوتر، مهندسی برق، ارتباطات و فناوری اطلاعات ایران در جهان اسلام
سال انتشار: 1400
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 285
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
CECI02_012
تاریخ نمایه سازی: 19 آذر 1400
چکیده مقاله:
Environmental factors believe that they guarantee human health, and this increases the pressure on health systems. According to studies, infectious diseases and corona loading originate from the environment and wildlife. Therefore, human pressure in the natural environment may cause the emergence of other diseases. Thus, strengthening health systems, improving infectious diseases in the wild, and protecting natural resources and the environment increase the risk of new diseases in the market in the future. This study reviews the results of articles that computationally identified the impact of climatic characteristics on the coronavirus. Finally, although it can not be said with certainty, it can be noted that the two factors of temperature and humidity have a significant impact on the prevalence of coronavirus. In this study, we reached this conclusion by examining twelve cities in Albania. Using the random forest machine learning method, we investigated the effect of climatic parameters on the mortality rate.
کلیدواژه ها:
نویسندگان
Milad Besharatifard
Amirkabir university of technology, M.s in computer science