Optimized Adaptive Combined Hierarchical Sliding Mode Controller Design for a Class of Uncertain Under-actuated Time-Varying Systems
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 201
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_TJEE-51-2_002
تاریخ نمایه سازی: 1 آذر 1400
چکیده مقاله:
This paper proposes an optimized adaptive combined hierarchical sliding mode controller (ACHSMC) for a class of under-actuated time-varying systems in presence of uncertainties and noise. For this purpose, the un-modeled dynamics and friction force are modeled as additive and multiplicative uncertainties, respectively. A combined hierarchical sliding mode controller (CHSMC) is designed using two layers of sliding manifolds. Then, the controller is adapted by considering a time-varying coefficient of the second layer sliding manifold of CHSMC system. The stability of this controller is approved by Lyapunov theorem. Finally, this method is performed on an under-actuated crane model that has two subsystems: trolley and payload can be controlled by a single input signal and the first layer sliding manifold parameter of ACHSMC is optimized by genetic algorithm (GA) to save energy of input signal. The simulation results show the stability and robust performance of the proposed controller against input noise and additive and multiplicative uncertainties and time varying parameters of the system compared to CHSMC method.
کلیدواژه ها:
Optimized adaptive controller ، Combined hierarchical sliding mode controller ، Under-actuated time varying system ، Additive and multiplicative uncertainty ، genetic algorithm
نویسندگان
مرضیه احمدی
Department of Electrical and Computer Engineering, University of Kashan, Kashan, Iran.
علیرضا فرجی
Department of Electrical and Computer Engineering, University of Kashan, Kashan, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :