MVO-Autism: An Effective Pre-treatment with High Performance for Improving Diagnosis of Autism Mellitus

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 317

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JECEI-10-1_017

تاریخ نمایه سازی: 1 آذر 1400

چکیده مقاله:

kground and Objectives: Autism is the most well-known disease that occurs in any age people. There is an increasing concern in appealing machine learning techniques to diagnose these incurable conditions. But, the poor quality of most datasets contains the production of efficient models for the forecast of autism. The lack of suitable pre-processing methods outlines inaccurate and unstable results. For diagnosing the disease, the techniques handled to improve the classification performance yielded better results, and other computerized technologies were applied.Methods: An effective and high performance model was introduced to address pre-processing problems such as missing values and outliers. Several based classifiers applied on a well-known autism data set in the classification stage. Among many alternatives, we remarked that combine replacement with the mean and improvement selection with Random Forest and Decision Tree technologies provide our obtained highest results.Results: The best-obtained accuracy, precision, recall, and F-Measure values of the MVO-Autism suggested model were the same, and equal ۱۰۰% outperforms their counterparts. Conclusion: The obtained results reveal that the suggested model can increase classification performance in terms of evaluation metrics. The results are evidence that the MVO-Autism model outperforms its counterparts. The reason is that this model overcomes both problems.

نویسندگان

R. Asgarnezhad

Department of Computer Engineering, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran and Department of Computer Engineering, Faculty of Electrical and Computer Engineering, Technical and Vocation University (TVU), Tehran,

K. Ali Mohsin Alhameedawi

Department of Computer Engineering, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran Department of Computer Engineering, Al-Rafidain University of Baghdad, Baghdad, Iraq

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • M.L. Pennington, D. Cullinan, L.B. Southern, "Defining autism: variability in ...
  • P.O. Towle, P.A. Patrick, "Autism spectrum disorder screening instruments for ...
  • M. Legerstee, D. Anderson, A. Schaffer, "Five‐and eight‐month‐old infants recognize ...
  • G. Dawson, A.N. Meltzoff, J. Osterling, J. Rinaldi, E. Brown, ...
  • J. Osterling, G. Dawson, "Early recognition of children with autism: ...
  • D.J. Grelotti, I. Gauthier, R.T. Schultz, "Social interest and the ...
  • K. Pelphrey, R. Adolphs, J.P. Morris, "Neuroanatomical substrates of social ...
  • A. Roman-Urrestarazu, C. Yáñez, C. López-Garí, C. Elgueta, C. Allison, ...
  • G. Divan, S. Bhavnani, K. Leadbitter, C. Ellis, J. Dasgupta, ...
  • P. Mazumdar, G. Arru, F. Battisti, "Early detection of children ...
  • R. Asgarnezhad, A. Monadjemi, M. Soltanaghaei, "A high-performance model based ...
  • R. Asgarnezhad, S.A. Monadjemi, M. Soltanaghaei, "An application of MOGW ...
  • R. Asgarnezhad, A. Monadjemi, M. Soltanaghaei, "NSE-PSO: Toward an effective ...
  • R. Asgarnezhad, S.A. Monadjemi, "NB VS. SVM: AContrastive study for ...
  • L. Zhang, A.Z. Amat, H.Zhao, A. Swanson, A.S. Weitlauf, Z. ...
  • S. Kopp, L. Gesellensetter, N.C. Krämer, I. Wachsmuth, "A conversational ...
  • A. Tewari, T. Brown, J. Canny, "A question-answering agent using ...
  • R. Yaghoubzadeh, K. Pitsch, S. Kopp, "Adaptive grounding and dialogue ...
  • C.-H. Min, "Automatic detection and labeling of self-stimulatory behavioral patterns ...
  • T. Westeyn, K. Vadas, X. Bian, T. Starner, G.D. Abowd, ...
  • E. Linstead, R. German, D. Dixon, D. Granpeesheh, M. Novack, ...
  • F.D. Foresee, M.T. Hagan, "Gauss-Newton approximation to Bayesian learning," in ...
  • O. Altay, M. Ulas, "Prediction of the autism spectrum disorder ...
  • M.J. Maenner, M. Yeargin-Allsopp, K. Van Naarden Braun, D.L. Christensen, ...
  • W. Liu, M. Li, L. Yi, "Identifying children with autism ...
  • Y. Jiao, R. Chen, X. Ke, K. Chu, Z. Lu, ...
  • C. Ecker, V. Rocha-Rego, P. Johnston, et al., "Investigating the ...
  • I.N. Yulita, M.I. Fanany, A.M. Arymurthy, "Comparing classification via regression ...
  • R. Anirudh, J.J. Thiagarajan, "Bootstrapping graph convolutional neural networks for ...
  • X.A. Bi, Y. Wang, Q. Shu, Q. Sun, Q. Xu, ...
  • Y. Kong, J. Gao, Y. Xu, Y. Pan, J. Wang, ...
  • [۳۲]S. Raj, S. Masood, "Analysis and detection of autism spectrum ...
  • H. Cheng, J. Yu, L. Xu, J. Li, "Power spectrum ...
  • A. Kazeminejad, R.C. Sotero, "Topological properties of resting-state fMRI functional ...
  • Z. Sherkatghanad, M. Akhondzadeh, S. Salari, M. Zomorodi-Moghadam, M. Abdar, ...
  • J. Han, M. Kamber, J. Pei, "Data mining concepts and ...
  • V. Vapnik, The nature of statistical learning theory: Springer science ...
  • T.K. Ho, "Random decision forests," in Proc. ۳rd international conference ...
  • T.K. Ho, "The random subspace method for constructing decision forests," ...
  • T. Joachims, "Text categorization with support vector machines: Learning with ...
  • S. Zhang, "KNN-CF Approach: Incorporating certainty factor to kNN classification," ...
  • R. Asgarnezhad, K. Ali Mohsin Alhameedawi, "Weka vs. Rapid Miner: ...
  • R. Asgarnezhad, S.A. Monadjemi, M. Soltanaghaei, "A new hierarchy framework ...
  • نمایش کامل مراجع