MVO-Autism: An Effective Pre-treatment with High Performance for Improving Diagnosis of Autism Mellitus
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 306
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JECEI-10-1_017
تاریخ نمایه سازی: 1 آذر 1400
چکیده مقاله:
kground and Objectives: Autism is the most well-known disease that occurs in any age people. There is an increasing concern in appealing machine learning techniques to diagnose these incurable conditions. But, the poor quality of most datasets contains the production of efficient models for the forecast of autism. The lack of suitable pre-processing methods outlines inaccurate and unstable results. For diagnosing the disease, the techniques handled to improve the classification performance yielded better results, and other computerized technologies were applied.Methods: An effective and high performance model was introduced to address pre-processing problems such as missing values and outliers. Several based classifiers applied on a well-known autism data set in the classification stage. Among many alternatives, we remarked that combine replacement with the mean and improvement selection with Random Forest and Decision Tree technologies provide our obtained highest results.Results: The best-obtained accuracy, precision, recall, and F-Measure values of the MVO-Autism suggested model were the same, and equal ۱۰۰% outperforms their counterparts. Conclusion: The obtained results reveal that the suggested model can increase classification performance in terms of evaluation metrics. The results are evidence that the MVO-Autism model outperforms its counterparts. The reason is that this model overcomes both problems.
کلیدواژه ها:
نویسندگان
R. Asgarnezhad
Department of Computer Engineering, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran and Department of Computer Engineering, Faculty of Electrical and Computer Engineering, Technical and Vocation University (TVU), Tehran,
K. Ali Mohsin Alhameedawi
Department of Computer Engineering, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran Department of Computer Engineering, Al-Rafidain University of Baghdad, Baghdad, Iraq
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :