Trend Detection and Prediction in Blogosphere based on Sentiment Analysis using PSO and Q-Learning

سال انتشار: 1398
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 217

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_ITRC-12-1_005

تاریخ نمایه سازی: 11 آبان 1400

چکیده مقاله:

The blogosphere is an effective communication platform where users publish and exchange their opinions. By analyzing user behavior, current and future trends of a community can be discovered. The proposed model for processing the social data of users first extracts related sentiments of weblog comments. An improved PSO algorithm is then employed to detect the trend of users in the TRDT (TRend DeTection) phase. By the discovery of trends at a reasonable time and appropriate precision, this model predicts future trends of the blogosphere using the Q-learning algorithm in the TRPT (TRend PredicTion) phase. Given the ever-increasing processing requirements and a huge volume of data, our approach provides a distributed processing/storage platform for TRDT and TRPT phases. The precision and performance of the proposed model in the TRDT phase are measured by the Chi-squared standard test. Moreover, the evaluation of the TRPT phase shows the comparable precision of the proposed approach with real-world scenarios such as the Netflix predictive system.

نویسندگان

Rezvan Mohamadrezaei

Department of Computer Engineering, Central Tehran Branch, Islamic Azad University

Reza Ravanmehr

Department of Computer Engineering, Central Tehran Branch, Islamic Azad University