Perdition of Smoking in Young Adults Based on Machine Learning Methods:A System Medicine Approach

سال انتشار: 1400
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 221

متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICSB04_044

تاریخ نمایه سازی: 20 مهر 1400

چکیده مقاله:

Tobacco use is one of the main leading cause of preventable death. Numerous studies have shown that intervention to postpone or prevent tobacco use can be an effective strategy to prevent smoking (Talluri, Wilkinson, Spitz, & Shete, ۲۰۱۴). Considering the reduced onset age of smoking, this study focused on predicting the usage status of teenage students for further prevention. In this study, we propose a machine learning framework for automatic classification of students to smoker and non-smoker based on questionnaire data. The main set of variables are including psychological (depression and self-efficacy), family, social, attitudinal and belief factors and school policy toward smoking. The results of specificity and negative predictive value of ۹۳% and ۹۸% respectively, show the high performance of Adaboost classifier in predicting and classifying students as smoker or non-smoker. At the next step, using randomized lasso feature selection, the more effective variables for classification were introduced.

نویسندگان

Elahe mousavi

Student Research Committee, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.;

hamidreza Roohafza

Cardiac Rehabilitation Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran;

Mohammadreza Sehhati

Department of Bioelectric and Biomedical Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran;

Ahmad Vaez

Department of Bioinformatics, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran