Prediction of gene ontology by deep learning

سال انتشار: 1400
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 181

متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICSB04_039

تاریخ نمایه سازی: 20 مهر 1400

چکیده مقاله:

The prediction of gene functions is a major challenge in biology and bioinformatics. Gene function prediction aims to predict a set of its associated GO terms along with the confidence of the association for a given gene. Existing databases of known gene functions are incomplete and prone to errors and experiments needed to improve these databases are costly. Conventional methods of gene function prediction are linear methods that are not effective in handling data of nonlinear structures. Recently a few studies attempted to incorporate nonlinear techniques into gene function prediction, but there still exists limitations. For example, (Khatri et al. ۲۰۰۵) used truncated singular value decomposition method (tSVD) for GO annotation prediction. In (Žitnik and Blaž. ۲۰۱۵), a method based on matrix factorization presented to predict gene functions with data fusion. In this study, to predict associated GO terms of genes, we proposed a novel method based on using deep neural networks (DNN). First, we find latent representations of genes and GO terms. Then, the similarity between latent representation vectors is measured by cosine function. This similarity is the probability of estimating the relation for a previously-unseen pair (Gene, GO Term).

نویسندگان

Niloofar Borhani

Isfahan University of Technology, Department of Electrical and Computer Enginnering;

Jafar Ghaisari

Isfahan University of Technology, Department of Electrical and Computer Enginnering;

Marzie Kamali

Isfahan University of Technology, Department of Electrical and Computer Enginnering;

Yousof Gheisari

Isfahan University of Medical Sciences, Regenerative Medicine Research Center