An Improved Real-Time Noise Removal Method in Video StreamBased on Pipe-and-Filter Architecture

سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 239

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JCR-14-1_002

تاریخ نمایه سازی: 18 مهر 1400

چکیده مقاله:

Automated analysis of video scenes requires the separation of moving objects from the background environment, which could not separate moving items from the background in the presence of noise. This paper presents a method to solve this challenge; this method uses the Directshow framework based on the pipe-and-filter architecture. This framework trace in three ways. In the first step, the values of the MSE, SNR, and PSNR criteria calculate. In this step, the results of the error criteria are compared with applying salt and pepper and Gaussian noise to images and then applying median, Gaussian, and Directshow filters. In the second step, the processing time for each method check in case of using median, Gaussian, and Directshow filter, and it will result that the used method in the article has high performance for real-time computing. In the third step, error criteria of foreground image check in the presence or absence of the Directshow filter. In the pipe-and-filter architecture, because filters can work asynchronously; as a result, it can boost the frame rate process, and the Directshow framework based on the pipe-and-filter architecture will remove the existing noise in the video at high speed. The results show that the used method is far superior to existing methods, and the calculated values for the MSE error criteria and the processing time decrease significantly. Using the Directshow, there are high values for the SNR and PSNR criteria, which indicate high-quality image restoration. By removing noise in the images, you could also separate moving objects from the background appropriately.

نویسندگان

Vahid Fazel Asl

Faculty of Computer and Information Technology Engineering, QIAU, Qazvin, Iran.

Babak Karasfi

Faculty of Computer and Information Technology Engineering, QIAU, Qazvin, Iran.

Behrooz Masoumi

Faculty of Computer and Information Technology Engineering, QIAU, Qazvin, Iran.

Mohamadreza Keyvanpor

Computer Engineering Department, Alzahra University, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Ji and et al., Robust video denoising using low rank ...
  • H.R.Schmidtke, A survey on verification strategies for intelligent transportation systems. ...
  • K.Vignesh, G. Yadav and A.Sethi, Abnormal Event Detection on BMTT-PETS ...
  • Jalalian, B. Karasfi, K. Samsudin, M. I. Saripan and S. ...
  • Shah, J. D. Deng and B. J. Woodford, Video background ...
  • P. Donovan and S. F. Sidney, Evaluation of Background Subtraction ...
  • Shimada, Y. Nonaka, H. Nagahara and R. Taniguchi, Case-based background ...
  • Alvar, A. Rodriguez-Calvo, A. Sanchez-Miralles and A. Arranz, Mixture of ...
  • Xu, J. Donga, B. Zhang and D. Xu, Background modeling ...
  • Goyal and J. Singhai, Review of background subtraction methods using ...
  • Joudaki, M. S. Bin Sunar and H. Kolivand, Background Subtraction ...
  • ouwmans, Traditional and recent approaches in background modeling for foreground ...
  • Gruenwedel, N. I. Petrovic, L. Jovanov, J. O. Nino-Casta-neda, A. ...
  • Bouwmans, J. Gonzalez, C. Shan, M. Piccardi and L. Davis, ...
  • Bayona, J. C. SanMiguel and J. M. Martínez, Stationary foreground ...
  • Valera and S. A. Velastin, Intelligent distributed surveillance systems: a ...
  • Babcock, S. Babu, M. Datar, R. Motwani and J. Widom, ...
  • Linetsky, Programming Microsoft Directshow. ۲۰۰۱ ...
  • Zivkovic, Improved adaptive Gaussian mixture model for background subtraction. Proceedings ...
  • Wojnarski, Debellor: A Data Mining Platform with Stream Architecture. Springer ...
  • Rybok, S. Friedberger, U. D. Hanebeck and R. Stiefelhagen, The ...
  • نمایش کامل مراجع