Detecting Breast Cancer through Blood Analysis Data using Classification Algorithms
محل انتشار: مجله هوش مصنوعی و داده کاوی، دوره: 9، شماره: 3
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 247
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JADM-9-3_008
تاریخ نمایه سازی: 18 مهر 1400
چکیده مقاله:
Breast cancer is the second major cause of death and accounts for ۱۶% of all cancer deaths worldwide. Most of the methods of detecting breast cancer are very expensive and difficult to interpret such as mammography. There are also limitations such as cumulative radiation exposure, over-diagnosis, false positives and negatives in women with a dense breast which pose certain uncertainties in high-risk population. The objective of this study is Detecting Breast Cancer Through Blood Analysis Data Using Classification Algorithms. This will serve as a complement to these expensive methods. High ranking features were extracted from the dataset. The KNN, SVM and J۴۸ algorithms were used as the training platform to classify ۱۱۶ instances. Furthermore, ۱۰-fold cross validation and holdout procedures were used coupled with changing of random seed. The result showed that KNN algorithm has the highest and best accuracy of ۸۹.۹۹% and ۸۵.۲۱% for cross validation and holdout procedure respectively. This is followed by the J۴۸ with ۸۴.۶۵% and ۷۵.۶۵% for the two procedures respectively. SVM had ۷۷.۵۸% and ۶۸.۶۹% respectively. Although it was also discovered that Blood Glucose level is a major determinant in detecting breast cancer, it has to be combined with other attributes to make decision as a result of other health issues like diabetes. With the result obtained, women are advised to do regular check-ups including blood analysis in order to know which of the blood components need to be worked on to prevent breast cancer based on the model generated in this study.
کلیدواژه ها:
نویسندگان
Oladosu Oladimeji
Department of Computer Science, University of Ibadan, Ibadan, Nigeria
Olayanju Oladimeji
Department of Computer Science and Information Technology, Bowen University, Iwo, Nigeria
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :