تشخیص صرع در سیگنال های الکتروانسفالوگرافی (EEG) بر اساس ویژگی طیف کلی موجک (GWS) با استفاده ماشین بردار پشتیبان
سال انتشار: 1398
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 315
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JASP-3-1_004
تاریخ نمایه سازی: 18 مهر 1400
چکیده مقاله:
در حدود یک درصد از مردم دنیا از صرع رنج می برند. اولین مرحله از درمان صرع، تشخیص به موقع و صحیح آن است. یکی از راه های تشخیص صرع، تجزیه و تحلیل دقیق سیگنال الکتروانسفالوگرافی (EEG) است. ویژگی های مختلفی جهت تشخیص این بیماری از روی سیگنال مانند دامنه سیگنال وجود دارد. در این مقاله، با بررسی اطلاعات زمان-فرکانسی سیگنال EEG در افراد مبتلا به سندرم صرع بدون تشنج و افراد سالم، روش جدیدی برای تشخیص صرع ارائه شده است. در ابتدا ویژگی طیف کلی موجک (GWS) برای سیگنال EEG افراد سالم و افراد مبتلا به سندرم صرع استخراج شده است. برای بررسی این طیف در باندهای فرکانسی، سیگنال EEG با استفاده از تبدیل موجک به ۵ زیرباند تجزیه می گردد. سپس با اعمال این ویژگی به طبقه بند مبتنی بر ماشین بردار پشتیبان به تشخیص صرع پرداخته شده است. نتایج تجزیه و تحلیل، تفاوت قابل ملاحظه ای، جهت تفکیک کردن فرد بر اساس سیگنال EEG فراهم می کند. روش پیشنهادی در مقایسه با روش های قبلی، سیگنال های سالم و صرعی را با دقت ۱۰۰% طبقه بندی کرده است. همچنین، مشاهده شد که مقادیر غالب GWS برای سیگنال های انتخاب شده از بیماران مبتلا به سندرم صرعی در باند فرکانسی دلتا و تتا یافت می شوند.
کلیدواژه ها:
نویسندگان
فریبا حسن زاده
گروه مهندسی پزشکی، دانشکده مهندسی برق و کامپیوتر، دانشگاه تبریز، تبریز، ایران
سعید مشگینی
گروه مهندسی پزشکی، دانشکده مهندسی برق و کامپیوتر، دانشگاه تبریز، تبریز، ایران
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :