Presenting a New Bankruptcy Prediction Model Based on Adjusted Financial Ratios According to the General Price Index
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 312
فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_AMFA-6-4_003
تاریخ نمایه سازی: 4 مهر 1400
چکیده مقاله:
In a volatile economic environment, financial decision making is always associated with risk. Bankruptcy, as one of the most important risks, has a significant impact on the interests of the firm's stakeholders, so presenting appropriate bankruptcy forecasting patterns is of the utmost importance. In this study, after reviewing the theoretical literature and selecting the financial ratios used in previous bankruptcy prediction models as the variable input of the initial model, the financial ratios were adjusted based on the price index and then, using the LARS algorithm, the ratios that have the highest ability to differentiate between bankrupt and non-bankrupt firms were identified, and finally, using the SVM and Naive Bayesian algorithms, the final bankruptcy prediction model was developed. For this purpose, the data of ۵۰ companies listed in Tehran Stock Exchange who had experienced bankruptcy for at least one year from ۲۰۰۸ to ۲۰۱۸ under Article ۱۴۱ of the Commercial Code were used. The results show that the adjusted financial ratios based on the price index in the model presented by SVM algorithm can be a very good predictor for bankruptcy of companies with an accuracy of ۹۹.۴%.
کلیدواژه ها:
نویسندگان
Naimeh Jebelli
Department of Accounting, Babol Branch, Islamic Azad University, Babol, Iran
Iman Dadashi
Department of Accounting, Babol Branch, Islamic Azad University, Babol, Iran
Mohammad Javad Zare Bahnamiri
Department of Accounting, Faculty of Economics and Management,University of Qom, Qom, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :