توسعه یک روش هوشمند خوشه بندی چندمعیاره مبتنی بر پرامتی
محل انتشار: مجله چشم انداز مدیریت صنعتی، دوره: 9، شماره: 4
سال انتشار: 1398
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 184
فایل این مقاله در 22 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_INDU-9-4_002
تاریخ نمایه سازی: 28 شهریور 1400
چکیده مقاله:
در سال های اخیر مسئله جدیدی با عنوان «خوشه بندی چندمعیاره» ظهور کرده که هدف آن، دسته بندی گزینه ها در گروه های همگنی به نام خوشه با توجه به معیارهای ارزیابی متفاوت است. در ادامه پژوهش های انجام گرفته در مبانی نظری، پژوهش حاضر با ترکیب الگوریتم K- میانگین و تکنیک پرامتی، به دنبال توسعه یک روش جدید خوشه بندی چندمعیاره است. پارامترهای مسئله، پروفایل های جداکننده خوشه ها هستند که برای بهینه سازی آنها از الگوریتم ژنتیک استفاده شده است. برای تنظیم پارامترهای ژنتیک نیز از روش تاگوچی استفاده می شود. در این مدل سازی، متغیرها در هر مرحله از به روزرسانی جواب ها، با توجه به فاصله امتیاز جریان خالص خود از پروفایل ها به نزدیک ترین خوشه تخصیص می یابند. عملگر جهش نیز صرفا زمانی اعمال می شود که میزان شباهت کروموزوم ها در هر جمعیت به حد خاصی برسد که این هوشمندسازی موجب کاهش زمان محاسباتی شده است. درنهایت با اجرای روش پیشنهادی بر روی چند نمونه مسائل تصادفی مالی، عملکرد آن با سایر الگوریتم های شناخته شده خوشه بندی مقایسه شده است. نتایج نشان می دهد که روش پیشنهادی ضمن تعیین تعداد بهینه خوشه ها، در مقایسه با سایر الگوریتم ها، جواب های دقیق تری ارائه می دهد.
کلیدواژه ها:
نویسندگان
امیر دانشور
استادیار مدیریت صنعتی، واحد الکترونیکی، دانشگاه آزاد اسلامی، تهران، ایران.
مهدی همایون فر
استادیار مدیریت صنعتی، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران.
آنیا فرهمندنژاد
کارشناسی ارشد مدیریت صنعتی، واحد الکترونیکی، دانشگاه آزاد اسلامی، تهران، ایران.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :