The Graft of ANN-FEM Technique in Macro-mechanics of Multi-oriented Natural Fiber/Polyester Laminates
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 177
فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_MACS-8-1_005
تاریخ نمایه سازی: 10 شهریور 1400
چکیده مقاله:
Low weight and high strength requirements are prime target design objectives in strength demanding applications. Skillful design of low density, low weight and eco-friendly natural fiber composites could provide an alternative material route to the actualization of lighter structures. The present study proposed ANN-FEM computational framework for the macro-mechanical analysis of multi-oriented Plantain Empty Fruit Bunch Fiber Laminate (PEFBFL) and Plantain Pseudo Stem Fiber Laminate (PPSFL). Control factors were numerically varied using Finite Element Method (FEM) and the resultant FEM models which encapsulated material properties of the laminate was streamlined into Artificial Neural Network (ANN) training scheme. A standard feed-forward backpropagation network was adopted and the ANN model consists of stacking sequence, laminate aspect ratio and fiber orientation as input variables while the selected network outputs variables include average stress and displacement. The laminate constitutive equation was developed which enabled the establishment of laminate load deformation affiliation and equivalent elastic constants. The damage onset for individual lamina was detected by the maximum principal stress theory and the overall laminate strength of ۴۰.۱۲ N/mm^۲ was obtained for PEFBFL and ۳۲.۱۶N/mm^۲ for PPSFL. On the whole, there was steady reduction in laminates elastic modulus which points to compromised stiffness in material principal axis arising from gradual failure of the plies, this trend continued until the last ply failure occurred in ply ۳ and ۴ at ۹۰ degrees in tensile mode of transverse direction. Stresses and displacements observed using CLT agree very closely with predictions of ANN.
کلیدواژه ها:
نویسندگان
Christian Emeka Okafor
Department of Mechanical Engineering, Nnamdi Azikiwe University, Awka, Nigeria
Christopher Chukwutoo Ihueze
Department of Industrial and Production Engineering, Nnamdi Azikiwe University, Awka, Nigeria
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :