A combined deep Neural Network for classifying T۱ weighted Magnetic Resonance Brain tumor

سال انتشار: 1400
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 444

فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:


تاریخ نمایه سازی: 7 شهریور 1400

چکیده مقاله:

One of the main challenges in treating tumors and assessing disease progression is diagnosing tumor size And distinguish tumor types from each other. Manual tumor segmentation in three-dimensional Magnetic Resonance images (volume MRI) is a time-consuming and tedious task. Its accuracy depends heavily on the operator's experience doing it. The need for an accurate and fully automatic method for segmenting brain tumors and measuring tumor size is strongly felt. This paper first uses a combined CNN-LSTM method to detect HG and LG tumors in ۳D brain images. Then it used the UNET Neural Network to improve the location of the tumor in the brain. In this article, we use BRATS ۲۰۱۸ database images, And manual segmentation is used as the Grand truth. in this paper, we showed that the proposed method could effectively perform segmentation.


Maryam Khoshkhooy Titkanlou

Master of Science, Biomedical engineering- Faculty of Engineering, Babol Noshirvani University of Technology, Babol, Iran

Mostafa Kazemi

Master of Science, Electrical Engineering, Faculty of Engineering, Shahed University, Tehran, Iran

Mohsen Amra

Master of Science, Financial Engineering, Department of Industrial Engineering, Islamic Azad university of south Tehran branch, Tehran, Iran