شناسایی الگوهای نمودار کنترل با استفاده از جنگل تصادفی و الگوریتم ژنتیک (RF-GA)
سال انتشار: 1400
نوع سند: مقاله کنفرانسی
زبان: فارسی
مشاهده: 571
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ONSM01_047
تاریخ نمایه سازی: 31 مرداد 1400
چکیده مقاله:
کیفیت محصولات یکی از موضوعات ضروری در صنایع تولیدی مدرن می باشد، تاکنون چندین روشکنترل و پایش فرآیندهای تولیدی معرفی شده که نمودارهای کنترل یکی از ابزارهای محبوب برای پایش مستمرفرآیند است. این پژوهش سعی دارد تا با استفاده از الگوریتم های هوشمند، به صورت خودکار الگوهاینمودار کنترل (CCP) را شناسایی کند. دو بخش اساسی تشکیل دهنده سیستم شناسایی الگوهای نمودار کنترل، ویژگی های ورودی الگوریتم و روش دسته بندی کننده است. در بخش اول ترکیبی از ۱۱ ویژگی های آماری و ۵ ویژگی های شکلی استفاده می شود. انتخاب ویژگی های تم ایز بخش CCPتاثیر به سزایی در افزایش دقت و کاهش حجم دسته بندی کننده ایفا می کند، جهت انتخاب زیرمجموعه ی موثر از ویژگی ها از تحلیل مولفه اساسی(PCA) و الگوریتم ژنتیک (GA) استفاده شده است. بخش دوم دسته بندی الگوها می باشد که در بخش از الگوریتم قدرتمند مبتنی بر جمعیت جنگل تصادفی (RF) استفاده می شود که قابلیت تعمیم پذیری و دقت بالایینسبت به دیگر روش های مرسوم دارند. در این پژوهش علاوه بر ۸ الگوی متداول در پژوهش هایتشخیص الگوهای نمودار کنترل (CCPR) استفاده شده است. از نتایج به دست آمده در این پژوهش مشخص شد، ویژگی های به دست آمده از روش انتخاب ویژگی توسط الگوریتم ژنتیک دقت بالاتری داشته است و همچنیندقت الگوریتم دسته بندی کننده جنگل تصافی در مقایسه با دیگر الگوریتم متداول تعمیم پذیری بهتری دارد.
کلیدواژه ها:
کنترل کیفیت ، شناسایی الگوهای نمودار کنترل (CCPR) ، جنگل تصادفی (RF) ، تحلیل مولفه اساسی (PCA) الگوریتم ژنتیک (GA)
نویسندگان
امیرحسین کبیری
دانشجو، گروه مدیریت صنعتی، دانشکده مدیریت و حسابداری و دانشگاه شهید بهشتی