Transparent Machine Learning Algorithm Offers Useful Prediction Method for Natural Gas Density
محل انتشار: مجله پردازش گاز، دوره: 6، شماره: 2
سال انتشار: 1397
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 265
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_GPJU-6-2_001
تاریخ نمایه سازی: 23 مرداد 1400
چکیده مقاله:
Machine-learning algorithms aid predictions for complex systems with multiple influencing variables. However, many neural-network related algorithms behave as black boxes in terms of revealing how the prediction of each data record is performed. This drawback limits their ability to provide detailed insights concerning the workings of the underlying system, or to relate predictions to specific characteristics of the underlying variables. The recently proposed transparent open box (TOB) learning network algorithm successfully addresses these issues by revealing the exact calculation involved in the prediction of each data record. That algorithm, described in summary, can be applied in a spreadsheet or fully-coded configurations and offers significant benefits to analysis and prediction of many natural gas systems. The algorithm is applied to the prediction of natural gas density using a published dataset of ۶۹۳ data records involving ۱۴ variables (temperature and pressure plus the molecular fractions of the twelve components: methane, ethane, propane, ۲-methylpropane, butane, ۲-methylbutane, pentane, octane, toluene, methylcyclopentane, nitrogen and carbon dioxide). The TOB network demonstrates very high prediction accuracy (up to R۲ =۰.۹۹۷), achieving comparable accuracy to the predictions reported (R۲ =۰.۹۹۵) for an artificial neuralnetwork (ANN) algorithm applied to the same data set. With its high levels of transparency, the TOB learning network offers a new approach to machine learning as applied to many natural gas systems.
کلیدواژه ها:
نویسندگان
David Wood
Professor DWA Energy Limited Lincoln, United Kingdom
Abouzar Choubineh
MSc Petroleum University of Technology, Ahwaz, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :