Presenting a Model for Financial Reporting Fraud Detection using Genetic Algorithm
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 440
فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_AMFA-6-2_011
تاریخ نمایه سازی: 20 تیر 1400
چکیده مقاله:
both academic and auditing firms have been searching for ways to detect corporate fraud. The main objective of this study was to present a model to detect financial reporting fraud by companies listed on Tehran Stock Exchange (TSE) using genetic algorithm. For this purpose, consistent with theoretical foundations, ۲۱ variables were selected to predict fraud in financial reporting that finally, using statistical tests, ۹ variables including SALE/EMP, RECT/SALE, LT/CEQ, INVT/SALE, SALE/TA, NI/CEQ, NI/SALE, LT/XINT, and AT/LT were selected as the potential financial reporting fraud indexes. Then, using genetic algorithm, the final model of fraud detection in financial reporting was presented. The statistical population of this study included ۶۶ companies including ۳۳ fraudulent and ۳۳ non-fraudulent companies from ۲۰۱۱ to ۲۰۱۶. The results showed that the presented model with the accuracy of ۹۱.۵% can detect fraudulent companies. These findings extend financial statement fraud research and can be used by practitioners and regulators to improve fraud risk models.
کلیدواژه ها:
نویسندگان
Mahmood Mohammadi
Department of Accounting, Damavand Branch, Islamic Azad University, Damavand, Iran.
Shohreh Yazdani
Department of Accounting, Damavand Branch, Islamic Azad University, Damavand, Iran.
Mohammadhamed Khanmohammadi
Department of Accounting, Damavand Branch, Islamic Azad University, Damavand, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :