Tensor-Based Neural Network Non-Linear Subgrid-scale Model for Large-eddy Simulation
محل انتشار: بیست و نهمین همایش سالانه بین المللی انجمن مهندسان مکانیک ایران و هشتمین همایش صنعت نیروگاه های حرارتی
سال انتشار: 1400
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 359
فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ISME29_190
تاریخ نمایه سازی: 13 تیر 1400
چکیده مقاله:
A tensor-based neural network (TBNN) is employed to obtain a physically-informed data-driven model of the subgrid-scale (SGS) stress tensor for large-eddysimulation (LES) of turbulent flow. Direct numerical simulation (DNS) data of a turbulent channel flow, carried out using a pseudo-spectral method at theReynolds number 𝑅𝑒 = ۲۸۰۰, based on the mean velocity and channel half height, is used for training of the neural network. The model predictions of SGS stress tensor were in good agreement with the filtered DNS data. Anisotropy invariant map of the SGS stresses also showed that model predictions meet realizability conditions and a proper level of SGS anisotropy in case of turbulent channel flow at Re = ۲۸۰۰
کلیدواژه ها:
نویسندگان
Matin Ghadimi Rezaei
Mechanical Engineering department, Shahid Beheshti University, Tehran, Iran
Amin Rasam
Mechanical Engineering department, Shahid Beheshti University, Tehran, Iran