ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
ناشر تخصصی کنفرانسهای ایران
ورود |عضویت رایگان |راهنمای سایت |عضویت کتابخانه ها
عنوان
مقاله

یک روش مبتنی بر انتخاب ویژگی با الگوریتم بهینه سازی پروانه به منظور پیش بینی زمان اجرای Job های مبتنی بر نگاشت-کاهش

سال انتشار: 1400
کد COI مقاله: IRANWEB07_016
زبان مقاله: فارسیمشاهده این مقاله: 64
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

خرید و دانلود فایل مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای 12 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

مشخصات نویسندگان مقاله یک روش مبتنی بر انتخاب ویژگی با الگوریتم بهینه سازی پروانه به منظور پیش بینی زمان اجرای Job های مبتنی بر نگاشت-کاهش

هادی ملانوری - گروه مهندسی کامپیوتر، واحد یزد، دانشگاه آزاد اسلامی، یزد، ایران،
ابوالفضل گندمی - گروه مهندسی کامپیوتر، واحد یزد، دانشگاه آزاد اسلامی، یزد، ایران،

چکیده مقاله:

یکی از بسترهای مهم برای پردازش کلان داده استفاده از معماری هدوپ است که میتوان با استفاده از عملیات نگاشت-کاهش، داده های بزرگ را در زمان واقعی مورد پردازش قرار داد. یکی از چالشهای مهم پردازش کلان داده در هدوپ زمان بندی دقیق jobهایی است که در این بستر اجراء میشوند و نیاز است که قبل از اجرای jobها زمان اجرای آن را پیش بینی نمود تا به درستی و به صورت بهینه زمانبندی شوند. در این مقاله برای تخمین زمان اجرای دقیق jobها از الگوریتم بهینه سازی پروانه برای انتخاب ویژگی های مهم jobها و از شبکه عصبی مصنوعی برای یادگیری استفاده شده است. تجزیه و تحلیل ها نشان می دهد که این الگوریتم، از الگوریتم بهینه سازی ذرات، الگوریتم بهینه سازی کفتار و الگوریتم کرم شبتاب خطای کمتری دارد. آزمایشات نشان میدهد مقدار تابع هدف انتخاب ویژگی، در روش پیشنهادی بر حسب تکرار، یک روند نزولی و کاهشی است. به منظور پیش بینی زمان اجرای jobها، افزایش جمعیت اولیه در این روش، متوسط مجذور خطا را در حدود %۲۵.۸۵ کاهش میدهد. مقایسه روش پیشنهادی با روشهای دیگر نشان میدهد خطای تخمین زمان اجرا در روش پیشنهادی از شبکه عصبی چند لایه، شبکه عصبی بازگشتی، درخت تصمیم گیری و جنگل تصادفی کمتر است.

کلیدواژه ها:

نگاشت - کاهش ، الگوریتم بهینه سازی پروانه ، شبکه عصبی ، زمان اجرای job

کد مقاله/لینک ثابت به این مقاله

کد یکتای اختصاصی (COI) این مقاله در پایگاه سیویلیکا IRANWEB07_016 میباشد و برای لینک دهی به این مقاله می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:

https://civilica.com/doc/1236898/

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
ملانوری، هادی و گندمی، ابوالفضل،1400،یک روش مبتنی بر انتخاب ویژگی با الگوریتم بهینه سازی پروانه به منظور پیش بینی زمان اجرای Job های مبتنی بر نگاشت-کاهش،هفتمین کنفرانس بین المللی وب پژوهی،تهران،https://civilica.com/doc/1236898

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (1400، ملانوری، هادی؛ ابوالفضل گندمی)
برای بار دوم به بعد: (1400، ملانوری؛ گندمی)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مدیریت اطلاعات پژوهشی

صدور گواهی نمایه سازی | گزارش اشکال مقاله | من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

علم سنجی و رتبه بندی مقاله

مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
نوع مرکز: دانشگاه آزاد
تعداد مقالات: 7,380
در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

مقالات مرتبط جدید

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.

پشتیبانی