Linking the past, present and future scenarios of soil erosion modeling in a river basin
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 256
فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_GJESM-7-3_009
تاریخ نمایه سازی: 18 خرداد 1400
چکیده مقاله:
BACKGROUND AND OBJECTIVE: Soil erosion is considered one of the major indicators of soil degradation in our environment. Extensive soil erosion process leads to erosion of nutrients in the topsoil and decreases in fertility and hence productivity. Moreover, creeping erosion leads to landslides in the hilly regions of the study area that affects the socio-economics of the inhabitants. The current study focuses on the estimation of soil erosion rate for the year ۲۰۱۱ to ۲۰۱۹ and projection for the years ۲۰۲۱, ۲۰۲۳ and ۲۰۲۵. METHODS: In this study, the Revised Universal Soil Loss Equation is used for estimation of soil erosion in the study area for the year ۲۰۱۱ to ۲۰۱۹. Using Artificial Neural Network-based Cellular Automata simulation, the Land Use Land Cover is projected for the future years ۲۰۲۱, ۲۰۲۳ and ۲۰۲۵. Using the projected layer as one of the spatial variables and applying the same model, Soil Erosion based on Revised Universal soil loss equation is projected for a corresponding years. FINDINGS: For both cases of projection, simulated layers of ۲۰۱۹ (land use land cover and soil erosion) are correlated with the estimated layer of ۲۰۱۹ using actual variables and validated. The agreement and accuracy of the model used in the case land use are ۰.۹۲ and ۹۶.۲۱% for the year ۲۰۱۹. The coefficient of determination of the model for both simulations is also observed to be ۰.۸۷۵ and ۰.۸۳۸. The simulated future soil erosion rate ranges from minimum of ۰ t/ha/y to maximum of ۵۲۴.۲۷۱ t/ha/y, ۱۱۶۰.۲۱۲ t/ha/y and ۷۸۳.۱۳۵ t/ha/y in the year ۲۰۲۱, ۲۰۲۳ and ۲۰۲۵, respectively. CONCLUSION: The study has emphasized the use of artificial neural network-based Cellular automata model for simulation of land use and land cover and subsequently estimation of soil erosion rate. With the simulation of future soil erosion rate, the study describes the trend in the erosion rate from past to future, passing through present scenario. With the scarcity of data, the methodology is found to be accurate and reliable for the region under study. ==========================================================================================COPYRIGHTS©۲۰۲۱ The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY ۴.۰), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.==========================================================================================
کلیدواژه ها:
نویسندگان
C. Loukrakpam
Department of Civil Engineering, National Institute of Technology Manipur, Langol Road, Lamphelpat, Imphal, Manipur, India
B. Oinam
Department of Civil Engineering, National Institute of Technology Manipur, Langol Road, Lamphelpat, Imphal, Manipur, India
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :