Improved Real-coded Genetic Algorithm for Planar Maximal Covering Location Problem

سال انتشار: 1399
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 399

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ETECH05_013

تاریخ نمایه سازی: 11 اردیبهشت 1400

چکیده مقاله:

Facility location is a strategic optimization problem in organizational decision making. Maximal coverage problems are a class of widely used facility location problems. In this paper, PMCLP problem is considered, and a real-coded genetic algorithm is introduced to attain near-optimal answers for PMCLP in short time. Initial solutions of the problem are obtained by a randomized greedy heuristic. These answers are then evolved by innovative demand-based crossover operator and a virtual-force mutation operator in successive iterations. To evaluate effectiveness and efficiency of the proposed method and its genetic operators, several medium and large-scale problems are solved in our experiments. Results are then compared with an exact algorithm. The experimental results show that the proposed real-coded genetic algorithm provides near-optimal answers to large-scale problems in tolerable time.

نویسندگان

Vahid Kiani

Computer Engineering Department University of Bojnord Bojnord, Iran