Algorithm for Recognition of Left Atrial Appendage Boundaries in Echocardiographic Images

سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 344

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJMP-18-2_007

تاریخ نمایه سازی: 6 اردیبهشت 1400

چکیده مقاله:

Introduction: The left atrial appendage )LAA( occlusion using a purpose-built device is a growing procedure. This study aimed to develop a computer-aided diagnostic system for the recognition of the LAA in echocardiographic images. Material and Methods: The three-dimensional (۳D) echocardiographic images of the LAA of ۲۶ patients successfully treated with an LAA occluder were used in this study. A total of ۲۰۸ ۳D derived two-dimensional images in the axial plane were derived from each ۳D dataset. Then, ۵۶۲ images in which the LAA boundaries were highly recognizable were selected for this study. The proposed convolutional neural network (CNN) in this study was based on open-source object identification and classification platform compiled under the You Only Look Once algorithm. Finally, ۴۱۹ and ۱۴۳ images were used for training and testing the algorithm, respectively. Results: Algorithm performance on the identification of the LAA region on a set of ۱۴۳ images was compared to that reported for the traced regions on the same images by an expert in echocardiography using an intersection over the union (IOU) algorithm. The algorithm was able to correctly identify the LAA region in all ۱۴۳ examined images with an average IOU of ۹۰.۷%.  Conclusion: The proposed image-based CNN algorithm in this study showed high accuracy in the recognition of the LAA boundaries in the echocardiographic images. The method can be used in the development of algorithms for the automated analysis of the area of the LAA used for device sizing and procedural planning in the LAA occlusion procedures.

نویسندگان

Hosein Ghayoumi Zadeh

۱. Non-communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran ۲. Department of Electrical Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

Ali Fayazi

۱. Non-communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran ۲. Department of Electrical Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

Narbeh Melikian

MD, MRCP, King’s College Hospital, London, United Kingdom

Mark J Monaghan

FBSE, FACC, FESC, King’s College Hospital, London, United Kingdom

Mehdi Eskandari

MD, FRACP, King’s College Hospital, London, United Kingdom

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Kirchhof P, Bernussi S, Kotecha D, Heidbuchel H. ESC guidelines ...
  • Colilla S, Crow A, Petkun W, Singer DE, Simon T, ...
  • Sposato LA, Cipriano LE, Saposnik G, Ruiz Vargas E, Riccio ...
  • Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, ...
  • Asmarats L, Rodes-Cabau J. Percutaneous Left Atrial Appendage Closure: Current ...
  • Cabrera JA, Saremi F, Sanchez-Quintana D. Left atrial appendage: anatomy ...
  • Wunderlich NC, Beigel R, Swaans MJ, Ho SY, Siegel RJ. ...
  • Acharya J, Gadhiya S, Raviya K. Segmentation techniques for image ...
  • Sivakumar P, Meenakshi S. A review on image segmentation techniques. ...
  • Leventic H, Babin D, Velicki L, Devos D, Galic I, ...
  • Al WA, Yun ID. Actor-Critic Reinforcement Learning for Automatic Left ...
  • Jin C, Feng J, Wang L, Yu H, Liu J, ...
  • Wang L, Feng J, Jin C, Lu J, Zhou J. ...
  • Alsharqi M, Woodward WJ, Mumith JA, Markham DC, Upton R, ...
  • Jin C, Feng J, Wang L, Yu H, Liu J, ...
  • Li J, Su Z, Geng J, Yin Y. Real-time detection ...
  • Radovic M, Adarkwa O, Wang Q. Object recognition in aerial ...
  • Wang Q, Rasmussen C, Song C. Fast, Deep Detection and ...
  • Simonyan K, Zisserman A. Very deep convolutional networks for large-scale ...
  • Zheng Y, Yang D, John M, Comaniciu D. Multi-part modeling ...
  • Leventić H, Babin D, Velicki L, Devos D, Galić I, ...
  • نمایش کامل مراجع