Dynamic Assessment and Microgenetic Development of EFL Teachers’ Classroom Interactional Competence
محل انتشار: دوفصلنامه آموزش زبان انگلیسی، دوره: 9، شماره: 2
سال انتشار: 1394
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 205
فایل این مقاله در 36 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_TELJ-9-2_001
تاریخ نمایه سازی: 6 اردیبهشت 1400
چکیده مقاله:
Teachers’ capability in shaping learner contributions (SLC), as a part of Classroom Interactional Competence (CIC), has been evidenced to play a key role in opening up precious opportunities for learners’ involvement, and consequently learning. Yet, very few studies to date have explored how teacher education programs (TEPs) can develop teachers’ capability to SLC. To fill up this lacuna, a TEP, founded on the principles of dynamic assessment (DA), was implemented with four EFL teachers serving as participants. In so doing, initially twelve hours of video- and audio-recorded data of the teachers were analyzed to identify the samples in which they missed the opportunity for SLC. Then one-on-one DA sessions were held with each of the teachers, during which the teacher educator tried to assist them to develop a deepened insight into the strategies they adopted to shape their learners’ contributions. In such dialogic context, the feedback was calibrated to create and nurture the zone of proximal teacher development (ZPTD). After instructional sessions, conversation analysis of the teachers' regular classrooms indicated a rise in the total frequency and variety of the SLC strategies employed. Furthermore, it was found that teachers' type of development differed greatly from one another. Results are discussed and some pedagogical implications are presented.
کلیدواژه ها:
نویسندگان
Mahmood Moradian
Lorestan University, Khorramabad, Iran
Mola Miri
Allameh Tabatabaei University, Tehran, Iran
Zahra Qassemi
Lorestan University, Khorramabad, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :