An Investigation into the Effective Factors in Comprehending English Garden-Path Sentences by EFL Learners
محل انتشار: فصلنامه آموزش مهارتهای زبان، دوره: 38، شماره: 1
سال انتشار: 1398
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 282
فایل این مقاله در 40 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JTLS-38-1_003
تاریخ نمایه سازی: 8 بهمن 1399
چکیده مقاله:
The present study aimed at highlighting the possible effects of age, proficiency level, and the structural composition of Garden-Path (GP) sentences on EFL learners' comprehension. 80 Iranian EFL learners were recruited from the initial pool of 114 participants based on the results of an English proficiency test; 40 advanced, and 40 intermediate learners were selected. Moreover, two age-groups of teenagers and adults were specified based on the study's necessities. In order to determine the accuracy and also the time needed for comprehension of GP sentences, a software application was designed, which provided learners with a set of GP and non-GP sentences and depicted the elapsed time for each participant to show the correct understanding of the presented sentences on the screen. As statistical analyses revealed, the participants, apart from age and proficiency levels, had less difficulty in comprehending non-GP items. It was also concluded that different types of GP sentences imposed different degrees of difficulty for the participants to comprehend. Furthermore, "proficiency level," unlike "age," was found to be a determining factor for the comprehension of GP sentences for Iranian EFL learners.
کلیدواژه ها:
نویسندگان
Ghaffar Barahuyee
department of foreign languages and linguistics, Shiraz University, Iran
Mohammad Saber Khaghaninejad
Department of foreign languages and linguistics, Shiraz University, Iran
Amirsaeid Moloodi
Department of foreign languages and linguistics, Shiraz University, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :