Using Genetic Algorithm to Enhance Nonnegative Matrix Factorization Initialization
محل انتشار: ششمین کنفرانس ماشین بینایی و پردازش تصویر ایران
سال انتشار: 1389
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,784
فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICMVIP06_147
تاریخ نمایه سازی: 20 فروردین 1390
چکیده مقاله:
Recently, there is a growing interest to improve Nonnegative Matrix Factorization (NMF) performance by developing efficient initialization methods. The aim of this paper is to estimate initial values for NMF components using Genetic algorithms (GAs). As far as NMF methods suffer from lack of convexity, the proposed method, here called NMF_GA can find a near optimal solution to initialize the NMF components. The proposed method was applied to JAFFE facial expression dataset. Results achieved by GA-NMF were compared to vast variety of NMF initialization methods and the supremacy of the obtained results showed the effectiveness of our GA-NMF method
کلیدواژه ها:
نویسندگان
Masoumeh Rezaei
CSE&IT Dept., Faculty of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran