Color Image Clustering Using Combination of Grasshopper Optimization Algorithm and k-means Algorithm

سال انتشار: 1399
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 876

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

MECECONF01_007

تاریخ نمایه سازی: 19 شهریور 1399

چکیده مقاله:

Clustering is one of the most important techniques of data analysis and data mining. Now, by combining algorithms, we try to improve image clustering and use the advantages of each of these algorithms, to cover their disadvantages with each other. One of the most popular of these algorithms is the k-means algorithm. This algorithm is one of the fastest clustering algorithms, but it also has disadvantages. This center-based algorithm is highly dependent on the initial points, and if these points are not selected correctly, we will not have proper clustering. Also, the possibility of local optimization is another shortcoming of this algorithm. We intend to propose a method that combines the k-mean and grasshopper optimization algorithms and makes improvements in image clustering. This hybrid algorithm has both the high speed of the k-means algorithm and the accuracy of the grasshopper optimization algorithm. At the end, the results obtained by this algorithm will be checked with valid datasets to test this combination of algorithms.

نویسندگان

Masoud Shahrian

Faculty of engineering, computer group Islamic Azad University -Tehran North Branch Tehran, Iran

Amir Keyvan Momtaz

Faculty of engineering, computer group Islamic Azad University -Tehran North Branch Tehran, Iran