محاسبه ی درصد چربی بدن به وسیله شبکه های عصبی مصنوعی و مقایسه ی الگوریتم های Levenberg-Marquardt و Bayesian Regularization

سال انتشار: 1399
نوع سند: مقاله کنفرانسی
زبان: فارسی
مشاهده: 713

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

MHCONF05_143

تاریخ نمایه سازی: 12 شهریور 1399

چکیده مقاله:

چاقی و اضافه وزن یکی از مشکلاتی است که درصد قابل توجهی از افراد را در سراسر دنیا دچار مشکل نموده است، تا جایی که مادر بسیاری از بیماری ها نامیده می شود. معیارهای متفاوتی برای محاسبه ی درصد چربی بدن در منابع مختلف ارائه شده است. محاسبه ی این پارامتر به صورت غیر مستقیم و از روی یک دسته پارامتر دیگر مثل جنس، وزن، قد، دور شکم و ... قابل اندازه گیری است. در این مقاله، هدف ارائه ی یک روش غیرخطی به نام شبکه های عصبی مصنوعی به منظور محاسبه ی درصد چربی بدن از روی 13 پارامتر ورودی است که از کاربر پرسیده می شود. هدف اصلی این تحقیق استفاده از یک الگوریتم متفاوت به نام Bayesian Regularization و مقایسه ی نتایج حاصل با روش قبلی Levenberg-Marquardt می باشد. بدیهی است در صورتی که کاربر بتواند با وارد کردن چند پارامتراز ویژگی های فیزیک بدن خود، محاسبه ی دقیق از درصد چربی بدنش داشته باشد، می تواند با تعادل بین میزان کالری مصرفی و فیزیک بدنش به میزان چربی ایده آل نزدیک شده و بدین ترتیب از ابتلا به تعداد چشمگیری از بیماری های پرخطر پیشگیری کند. دقت بدست آمده از روش L.M حدود 86% ور روش B.R حدود 88% می باشد. زمان مورد نیاز برای تعلیم با روش اول به مراتب از روش دوم کمتر می باشد.

نویسندگان

صدف عنبرزاده

عضو هیئت علمی دانشگاه شیخ بهایی