Automatic Test Data Generation Based on a Modified Genetic Algorithm

سال انتشار: 1399
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 713

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ITCT09_016

تاریخ نمایه سازی: 6 شهریور 1399

چکیده مقاله:

Software Testing is one of the essential parts of the software development lifecycle and structural testing is one of the most widely used testing principles to test various software. In the structural test, the test data generation is very important. Therefore, the problem becomes a search problem and Search Algorithms can be used. Genetic Algorithm(GA) is one of the widely used algorithms in this field. for the problem that GA suffers from large iteration times and low efficiency in test data generation, this paper proposes a Modified Genetic Algorithm(MGA), in this method, we design the chromosome probability of crossover and mutation which has relationship with chromosome adaptability. Experimental result shows that MGA has faster convergence speed and higher test data generation efficiency compared with traditional GA.

نویسندگان

Amirhossein Damia

Faculty of Computer Engineering K. N. Toosi University Tehran, Iran

Hamid Tahermanesh

Faculy of Elelctrical Engineering K. N. Toosi University Tehran, Iran

Nasib Damia

Master of Exercise Physiology, Islamic Azad University, Yasuj Branch

Saeed Peghan

Master of MBA, Human Resources, Islamic Azad University, Dehaghan Branch