Automatic Test Data Generation Based on a Modified Genetic Algorithm
سال انتشار: 1399
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 713
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ITCT09_016
تاریخ نمایه سازی: 6 شهریور 1399
چکیده مقاله:
Software Testing is one of the essential parts of the software development lifecycle and structural testing is one of the most widely used testing principles to test various software. In the structural test, the test data generation is very important. Therefore, the problem becomes a search problem and Search Algorithms can be used. Genetic Algorithm(GA) is one of the widely used algorithms in this field. for the problem that GA suffers from large iteration times and low efficiency in test data generation, this paper proposes a Modified Genetic Algorithm(MGA), in this method, we design the chromosome probability of crossover and mutation which has relationship with chromosome adaptability. Experimental result shows that MGA has faster convergence speed and higher test data generation efficiency compared with traditional GA.
کلیدواژه ها:
نویسندگان
Amirhossein Damia
Faculty of Computer Engineering K. N. Toosi University Tehran, Iran
Hamid Tahermanesh
Faculy of Elelctrical Engineering K. N. Toosi University Tehran, Iran
Nasib Damia
Master of Exercise Physiology, Islamic Azad University, Yasuj Branch
Saeed Peghan
Master of MBA, Human Resources, Islamic Azad University, Dehaghan Branch