Selection of an Optimal Hybrid Water/Gas Injection Scenario for Maximization of Oil Recovery Using Genetic Algorithm

سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 425

فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJOGST-9-1_007

تاریخ نمایه سازی: 6 خرداد 1399

چکیده مقاله:

Production strategy from a hydrocarbon reservoir plays an important role in optimal field development in the sense of maximizing oil recovery and economic profits. To this end, self-adapting optimization algorithms are necessary due to the great number of variables and the excessive time required for exhaustive simulation runs. Thus, this paper utilizes genetic algorithm (GA), and the objective function is defined as net present value (NPV). After developing a suitable program code and coupling it with a commercial simulator, the accuracy of the code was ensured using a synthetic reservoir. Afterward, the program was applied to an Iranian southwest oil reservoir in order to attain the optimum scenario for primary and secondary production. Different hybrid water/gas injection scenarios were studied, and the type of wells, the number of wells, well coordination/location, and the flow rate (production/injection) of each well were optimized. The results from these scenarios were compared, and simultaneous water and gas (SWAG) injection was found to have the highest overall profit representing an NPV of about 28.1 billion dollars. The application of automated optimization procedures gives rise to the possibility of including additional decision variables with less time consumption, and thus pushing the scopes of optimization projects even further.

نویسندگان

Shahin Kord

Assistant Professor, Department of Petroleum Engineering, Petroleum University of Technology, Ahwaz, Iran

Omid Ourahmadi

M.S. Student, Department of Petroleum Engineering, Petroleum University of Technology, Ahwaz, Iran

Arman Namaee-Ghasemi

M.S. Student, Department of Petroleum Engineering, Petroleum University of Technology, Ahwaz, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Badru, O. and Kabir, C., Well Placement Optimization in Field ...
  • Bittencourt, A. C. and Horne, R. N. Reservoir Development and ...
  • Bukhamsin, A. Y., Farshi, M. M., and Aziz, K. Optimization ...
  • Chen, S., Li, H. and Yang, D., Optimization of Production ...
  • Goldberg, D. E. Computer-aided Gas Pipeline Operation Using Genetic Algorithms ...
  • Güyagüler, B., Optimization of Well Placement and Assessment of Uncertainty, ...
  • Holland, J. H. Genetic Algorithms and the Optimal Allocation of ...
  • Jefferys, E., Design Applications of Genetic Algorithms, Paper presented at ...
  • Jia, L., Kumar, L., Kumar, K., Nicoli, M., Dexcote, Y., ...
  • Lang, Z. and Horne, R., Optimum Production Scheduling using Reservoir ...
  • Lazo, J. G. L., Pacheco, M. A. C., and Vellasco, ...
  • Morales, A. N., Gibbs, T. H., Nasrabadi, H., and Zhu, ...
  • Nasrabadi, H., Morales, A., and Zhu, D., Well Placement Optimization: ...
  • Nogueira, P. D. B. and Schiozer, D. J., An Efficient ...
  • Özdoğan, U. and Horne, R.N., Optimization of Well Placement under ...
  • Pan, Y. and Horne, R. N., Improved Methods for Multivariate ...
  • Salmachi, A., Sayyafzadeh, M., and Haghighi, M., Infill Well Placement ...
  • Sambo, C., Hematpour, H., Danaei, S., Herman, M., Ghosh, D., ...
  • Stoisits, R., Crawford, K., MacAllister, D., McCormack, M., Lawal, A., ...
  • Tavakkolian, M., Jalali, F., and Emadi, M., Production Optimization using ...
  • Wang, S., Yeskaiyr, B., and Walker, C., A Sector Model ...
  • Xuefei, S. and Mohanty, K. K., Estimation of Flow Functions ...
  • Yeten, B., Optimum Deployment of Nonconventional Wells, Doctoral Dissertation, Stanford ...
  • Yeten, B., Durlofsky, L. J., and Aziz, K., Optimization of ...
  • Zarei, F., Daliri, A., and Alizadeh, N., The Use of ...
  • نمایش کامل مراجع