Employing a novel content-based similarity measure for a machine learning-driven focused crawler

سال انتشار: 1398
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 851

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

CEPS06_121

تاریخ نمایه سازی: 9 اردیبهشت 1399

چکیده مقاله:

The volume of the World Wide Web is growing rapidly, reaching a point where governing data is challenging. Search engines are used to collect data across the web for users. Web crawlers as the major part of search engines are then used to retrieve relevant data on the web according to the user requests. Accordingly, a focused crawler considers a predefined subject and retrieves corresponding relevant pages. In this paper, we propose an efficient focused web crawling approach, which uses a combination of a content-based similarity measure and a Naive Bayes learning classifier in order to find relevant pages to a particular subject. Our first experimental studies show satisfactory improvements where accuracy and recall are increased by 4% and 1% respectively.

نویسندگان

Atiye Jabalameli

Department of Electrical and Computer Engineering, University of Kashan, Kashan, Iran

S. Mehdi Vahidipour

Department of Electrical and Computer Engineering, University of Kashan, Kashan, Iran

Mohammad Mahdi Mohammadi

Department of Computer Engineering, Amirkabir University of Technology, Tehran, Iran