A Context-Aware Recommender System Based On Collaborative Filtering In Restaurant Industry
محل انتشار: سومین کنفرانس بین المللی محاسبات نرم
سال انتشار: 1398
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 611
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
CSCG03_009
تاریخ نمایه سازی: 14 فروردین 1399
چکیده مقاله:
Culture of going out for food is increasing, especially in metropolitan cities and finding a nearby restaurant that matches users’ interests and preferences is difficult therefore, designing and developing a restaurant recommender system can be an appropriate solution for this problem. Recommendation systems filter and recommend only relevant data to the user using different filtering techniques. This article focuses on presenting restaurant recommender systems by combining collaborative filtering and context aware filtering on dataset of restaurants in Tehran. We use location context and interest drift to improve our system accuracy. The results of the evaluations show that our model in comparison with the two recommended model of Tag-weight and USTTR has an improvement of 2.25% and 3.1% respectively, in terms of precision.
کلیدواژه ها:
نویسندگان
Lale Talaie
Department of Computer Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran;
Ali Harounabadi
Department of Computer Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran;