A Hybrid Method for Fault Location in HVDC-Connected Wind Power Plants Using Optimized RBF Neural Network and Efficient Features
سال انتشار: 1397
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 537
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CRPASE-4-1_007
تاریخ نمایه سازی: 27 مرداد 1397
چکیده مقاله:
High voltage direct current (HVDC) transmission system is going to become the most economical and efficient way of power delivery for large and remote offshore wind power plants. Designing an accurate and fast fault location method in HVDC-connected wind power plants is necessary to maintain uninterrupted power delivery and protect sensitive devices of these systems. This paper proposes a hybrid method for fault location on voltage source converter HVDC (VSC-HVDC) transmission line which connects the wind power plant to the main AC grids using one terminal current data. The proposed method includes three main modules: the feature extraction module, the estimator module and learning algorithm module. In the feature extraction module, frequency feature are extracted using wavelet transform. In the estimator module, radial basis function neural network (RBFNN) is used. In RBFNN, learning algorithm has a high impact on the network performance. Therefore, a new learning algorithm based on the bee s algorithm (BA) has been used in the learning module. The proposed method is tested on 250 km VSC-HVDC transmission line. The obtained results have shown that combination of proposed feurears and Bee-RBF has accuracy in fault location in HVDC systems
کلیدواژه ها:
نویسندگان
Abdoljalil Addeh
Faculty of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Babol, Iran
Abdol Aziz Kalteh
Department of Electrical Engineering, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran
Amangaldi Koochaki
Department of Electrical Engineering, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran