A Hybrid Method for Fault Location in HVDC-Connected Wind Power Plants Using Optimized RBF Neural Network and Efficient Features

سال انتشار: 1397
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 537

فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_CRPASE-4-1_007

تاریخ نمایه سازی: 27 مرداد 1397

چکیده مقاله:

High voltage direct current (HVDC) transmission system is going to become the most economical and efficient way of power delivery for large and remote offshore wind power plants. Designing an accurate and fast fault location method in HVDC-connected wind power plants is necessary to maintain uninterrupted power delivery and protect sensitive devices of these systems. This paper proposes a hybrid method for fault location on voltage source converter HVDC (VSC-HVDC) transmission line which connects the wind power plant to the main AC grids using one terminal current data. The proposed method includes three main modules: the feature extraction module, the estimator module and learning algorithm module. In the feature extraction module, frequency feature are extracted using wavelet transform. In the estimator module, radial basis function neural network (RBFNN) is used. In RBFNN, learning algorithm has a high impact on the network performance. Therefore, a new learning algorithm based on the bee s algorithm (BA) has been used in the learning module. The proposed method is tested on 250 km VSC-HVDC transmission line. The obtained results have shown that combination of proposed feurears and Bee-RBF has accuracy in fault location in HVDC systems

کلیدواژه ها:

Offshore wind power plants ، VSC-HVDC ، Fault location ، RBFNN ، Bee’s algorithm

نویسندگان

Abdoljalil Addeh

Faculty of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Babol, Iran

Abdol Aziz Kalteh

Department of Electrical Engineering, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran

Amangaldi Koochaki

Department of Electrical Engineering, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran